Math.ru
Михаил Ефимович Левинштейн, Григорий Соломонович СиминМ.: Наука, 1987. 320 с.
Тираж 134000 экз.
Серия Библиотечка «Квант», выпуск 65
|
Популярный рассказ о полупроводниковых приборах – о том, как они устроены, как работают, где применяются, как выращивают и очищают полупроводники, как изготавливают интегральные схемы, как зарождалась полупроводниковая электроника и какие удивительные перемены произошли в мире с ее появлением. В основе работы полупроводниковых приборов лежат свойства кристалла, из которого прибор изготовлен, и свойства барьеров, возникающих на границе между различными частями кристалла. Поняв свойства полупроводников и преодолев барьеры, можно разобраться в том, как работает любой прибор – от простейшего диода до самой сложной интегральной схемы.
Для учащихся старших классов, студентов, преподавателей.
Содержание
От авторов
Введение. Дорогу осилит идущий
Часть I. ПОЛУПРОВОДНИКИ
Глава 1. Что такое полупроводник
Металлы, диэлектрики, полупроводники
Собственные полупроводники
“Свободные” электроны в кристалле
Дырки
Генерация и рекомбинация
Тепловая генерация электронов и дырок
Концентрация электронов и дырок в собственном полупроводнике
Бестигельная зонная плавка
Примесные полупроводники
Донорная примесь
Примесное истощение
Зависимость концентрации электронов от температуры
Дырки в электронном полупроводнике
Акцепторная примесь
Послушайте теперь ту же мелодию в исполнении фагота
Компенсация
Moralite
Глава 2.
Рождение и смерть
Глубокие центры: компенсаторы, ступеньки, убийцы
Жизнь и движение
Тепловое движение: средняя скорость, шарики для настольного тенниса на подносе и в ведре с водой
Движение в электрическом поле: подвижность, зависимость дрейфовой скорости от поля, энергетическая диаграмма
История самых главных понятий
Диффузия (коэффициент диффузии, диффузионный ток, соотношение Эйнштейна, скорость диффузии, диффузия неравновесных носителей)
Moralite
Часть II. БАРЬЕРЫ
Глава 3.
Работа выхода
Вернись, я вновь и вновь зову – вернись
Двойной заряженный слой
Как определяется работа выхода и чему она равна
С полупроводниками, как всегда дело обстоит непросто
Поверхностные состояния
Уровни Тамма
Реальная поверхность
Изгибы зон, поверхностный потенциал
Moralite
Глава 4. Основные параметры энергетических барьеров в полупроводниках
Как внешнее электрическое поле проникает в металл, диэлектрик, полупроводник
Металл
Диэлектрик
Полупроводник
Закон изменения поля с координатой
Распределение поля в барьере. Ширина барьера
Трансмутационное легирование полупроводников
Несколько слов о прямоугольных треугольниках
Moralite
Глава 5. p-n переход
Способы получения p-n переходов
Сплавление
Диффузия
Ионная имплантация
Барьер на границе
Высота барьера
Обедненный слой
Чудесное равновесие
Обратное смещение
Высота и форма барьера
Обратный ток
Фотодиоды
Барьерная емкость
Варикапы
Ударная ионизация
Первая похвала терпению
Прямое смещение
Высота барьера
Прямой ток
Инжекция
Снова прямой ток
Светодиоды
Солнечные батареи
Выпрямительные диоды
Вторая похвала терпению
Moralite
Часть III.
Глава 6. Биполярные транзисторы
Принцип работы биполярного транзистора
Усиление по току
Притча о главном и деталях
Быстродействие транзистора
Как выглядят биполярные транзисторы и как они изготавливаются
Фотолитография
Простейшие транзисторные схемы
Схема усилителя с общим эмиттером
Схема усилителя с общей базой
Moralite
Глава 7. Полевой транзистор
На заре туманной юности
Основная идея
Старые друзья
Зрелость и расцвет
Полевой транзистор с p-n переходом
Эпитаксия
Усердие все превозмогает: МДП транзисторы
Несколько важных деталей
Физическая картина работы полевого транзистора в реальных рабочих режимах
Основные параметры полевых транзисторов
Крутизна
Быстродействие
Полевой транзистор как элемент радиотехнических схем
Moralite
Глава 8. Транзисторы и жизнь
Первая королева
Гадкий утенок
Да здравствует король!
Король исчезает. Да здравствует король!
Претенденты на трон
Объемные интегральные схемы
Полупроводниковые элементы оптических ЭВМ
Биорадиоэлектроника
Заключение
|
Богдан Грабовски. Справочник по электронике
Богдан Грабовски. Справочник по электронике
Предисловие к русскому изданию
С удовольствием представляю российскому читателю второе издание «Краткого справочника по электронике» Богдана Грабовски.
Сейчас на книжных полках можно увидеть немало литературы по электронике, но среди изданий, рассчитанных на массового читателя, найдется не так уж много книг, которые и широтой охвата материала, и своей полезностью напоминали бы известные во всем мире «Искусство схемотехники» П. Хоровица и У. Хилла или «Полупроводниковую схемотехнику» У. Титце и К. Шенка.
Существует два типа справочных изданий по электронной технике. В первых приводятся основные технические характеристики и параметры элементов или устройств. Однако при сегодняшнем темпе развития технологий эти сведения быстро устаревают. А справочники второго типа содержат «вечную» информацию, которая с помощью новых технологических решений позволяет получать все новые достижения в этой области. Книга, которую вы держите в руках, относится ко второму типу. Любителю электроники или профессионалу надо иметь справочники обоих типов. Но без второго – первые бесполезны.
Обширный справочный материал, представленный в книге, охватывает большинство вопросов, с которыми приходится сталкиваться как любителям электроники, автоматики и вычислительной техники, так и специалистам, занимающимся разработкой электронных устройств. Разумеется, справочник будет полезен и студентам.
В книге рассмотрены наиболее важные вопросы по теории радиотехнических цепей и сигналов; приведены сведения о материалах и основных компонентах электронной аппаратуры; описаны элементы полупроводниковой техники, от диодов и транзисторов до операционных усилителей и схем на их основе; рассмотрены основные функциональные блоки как аналоговой, так и цифровой схемотехники: пороговые устройства, коммутаторы, умножители, генераторы сигналов, модуляторы и детекторы, схемы автоматической регулировки усиления, стабилизаторы напряжения, усилители мощности, СВЧ-усилители, логические комбинационные и последовательностные схемы; дано элементарное введение в цифровую обработку сигналов и описана работа микропроцессоров и микроконтроллеров.
Во Франции данная книга выдержала четыре издания; русский перевод был выполнен с последнего французского издания. Для второго русского издания текст книги был полностью переработан, исправлены замеченные ошибки, используемая терминология приведена в соответствие российским стандартам.
Надеюсь, что справочник Б. Грабовски займет достойное место в технической библиотечке всех любителей электроники &mdash и тех, кто «думает» с паяльником в руках, и тех, кто использует в своей работе сложные программы автоматизированного проектирования. И тем, и другим требуется то главное, что составляет основу этой удивительной области человеческой мысли и отрасли современной техники, тот фундамент, на котором возводятся новые этажи этого величественного здания, всего за несколько десятилетий так круто изменившего облик всей нашей цивилизации.
…
Чем занять детей на самоизоляции и как самому провести время с пользой?
30.04.2020
Период самоизоляции в России продлен до 12 мая, при этом дети проводят все свое время с родителями. Чем заняться в период майских праздников, если вы остаетесь дома, а видеоигры уже надоели?! Самое время посвятить себя науке и технике! Мы подготовили подборку увлекательных и развивающих наборов для детей и их родителей.
999 схем + школа
Электронный набор «999 схем + школа» – это игра, тесно соединяющая знания о физическом мире, удовольствие и практическую полезность. Собирая те или иные электрические цепи, можно отдыхая, познакомиться с удивительным миром электроники. Это не только игрушка, но и мощный обучающий инструмент, позволяющий ребёнку начать интенсивное обучение электронике и способный помочь в освоении школьной программы. По сравнению с наборами «180 схем» и «320 схем» здесь не только добавлены новые элементы, которые позволяют собрать более 1000 схем, но и две интереснейшие книги.
«Книга 1» содержит 21 практическое занятие, которые согласуются с существующей школьной программой и учебниками физики для 8-11 классов. Основная задача – показать связь между школьной программой и реальной жизнью. Именно поэтому конструктор содержит элементы, которые присутствуют практически во всей окружающей нас технике — компьютерах, телефонах, автомобилях, фото и видеокамерах, телевизорах, музыкальной аппаратуре и т.
В «Книге 2» приводятся 999 схем, которые доступны ребёнку начиная с 5 лет.
Абсолютная безопасность и простота сборки — не надо паять!
Многообразие прилагаемых элементов позволит даже умудренному в электронике человеку собрать что-то новое и затем воплотить это в реальной жизни. Этот конструктор получил высокую оценку у специалистов в области электроники, а также прошел апробацию во многих российских школах и учреждениях, работающих с детьми. Рекомендован УМО МПГУ Министерства образования и науки РФ для образовательных учреждений. Отличный способ играть и учить физику!
Юный физик
Как создать радугу? Почему светит лампа? Как устроен компас? Что такое переменное сопротивление?
С помощью набора «Юный физик» ребенок познакомится с законами окружающего мира и научится легко ориентироваться в нем.
120 опытов – для умного досуга как детей, так и взрослых. Основы электричества, электростатики, магнетизма, электромагнетизма, электрохимии, оптики и техники доступно и доходчиво объясняются в подробной книге-руководстве, которая поможет разобраться в сути физических экспериментов. Все эксперименты в наборе соответствуют школьной программе. Рекомендуемый возраст: от 7 лет и старше.
Чему научится ребенок?
Юный исследователь получит навыки построения электрических цепей, проведет опыты с резисторами, конденсаторами и диодами, узнает о свойствах жидкостей, познакомится с теорией строения вещества, проведет необычные эксперименты со светофильтрами, батарейками и моторчиком. Набор «Юный физик» научит исследовать проблему, проверять услышанное /прочитанное экспериментом. Продемонстрирует, как использовать научные методы для изучения окружающих явлений и объектов.
Мир Левенгука
Набор «Мир Левенгука» как нельзя лучше подходит для досуга всей семьи, ведь он позволяет заглянуть в таинственный и захватывающий мир микроорганизмов, узнать о том, как устроены растения, животные и грибы. Набор рассчитан на широкую аудиторию от 8 до 99 лет и даже старше. Для школьников набор окажет неоценимую помощь при изучении курса окружающего мира и биологии (1-11 классы). Набор «Мир Левенгука» — идеальный помощник при создании школьных исследовательских проектов.
Для людей постарше – поможет дать ответ на многие вопросы, например, о качестве продуктов, принесенных из магазина — колбасы, икры, молока. Этот набор — также и отличный способ узнать больше о предметах из неживого мира — кирпиче, бумаге и даже пыли. Вы можете самостоятельно провести 77 опытов, подробно описанных в прилагаемой книге.
Основу набора составляет микроскоп с 10х-кратно увеличивающим окуляром и тремя объективами 4х-, 10х- и 40х-кратного увеличения. Если перемножить значения увеличений окуляра и объектива, получим общее увеличение микроскопа: в 40, 100 и 400 раз.
Чему научится ребенок?
Юный ученый узнает, из чего состоят неживые объекты, живые организмы и даже он сам. Научится использовать и классифицировать свои знания. В собственной домашней лаборатории ребенок достигнет невероятных успехов. Научится работать с техникой, воспитает в себе терпеливость, аккуратность, внимательность, бережное отношение к вещам и окружающему миру.
Развивающий электронный конструктор “Знаток”, 999 схем Электронный конструктор ЗНАТОК – это игра, тесно соединяющая знания о физическом мире, удовольствие и практическую полезность. Собирая те или иные электрические цепи, можно быстро усвоить уйму знаний и практических навыков по электронным схемам и, с удовольствием отдыхая, познакомиться с удивительным миром электроники. Схемы с похожими названиями построены при помощи совершенно различных цепей и позволяют увидеть все разнообразие электронных технологий. В этом руководстве для каждой электрической схемы приводится только один способ сборки. Однако ее можно собрать самыми разными способами, а также, используя свою изобретательность и творческий подход, придумать много других интересных схем. Испытав схему на нашем конструкторе Вы сможете собрать такую же из своих деталей и применить ее в жизни. Руководство содержит иллюстрации – от простых до сложных, – и 999 описаний схем, которые вы можете быстро собрать. Многие схемы носят не только познавательный характер, но и пригодны для практического использования. В схемах используется ручное, магнитное, световое, водяное, звуковое, электрическое, а также сенсорное управление. Собрав электрическую схему, можно получить акустический, оптический или электрический выходной сигнал. Конструктор содержит все необходимое, чтобы заинтересовать людей любого возраста – и дошкольников, и взрослых. Что можно сделать: лампа, электрический вентилятор, вентилятор,
управляемый магнитом, светодиод, музыкальный дверной звонок
с ручным управлением (или управляемый звуком), лампа, включаемая
водой, сигналы пожарной машины, яркая лампа с сенсорным управлением,
электрическое пианино, управляемое светом, защитная сигнализация,
срабатывающая на движение, генератор звука высокой тональности,
электронный метроном, звуки музыкальных инструментов и многое
другое. 999 схем – 15 новых игр в неделю круглый год! Среди них: · Лампа |
Электроника как хобби: Удивительные электронные устройства
Вот приобрел я себе эту книжку и теперь думаю , что из ее я соберу первым.
Описание: В предлагаемой книге известного зарубежного технического писателя – популяризатора науки и техники Боба Яннини даны описания различных физических явлений: магнитных катушек Тесла, плазмы, лазеров, электрокинетики, ультраакустики. Информация о них начинается с краткой, просто изложенной теории.
Теоретическая часть дополняется практической: каждая глава, а их 28, представляет отдельный проект, в котором за редким исключением дается и описывается принципиальная схема, порядок сборки устройства проекта – предварительный и окончательный, рисунки печатных плат и монтажные схемы, перечень элементов и практические советы по соблюдению правил техники безопасности. На основании изложенного материала даже не очень опытные радиолюбители могут собрать понравившиеся им устройства, представленные в этой книге, окунувшись в увлекательный мир техники.
Оглавление
Часть 1
Глава 1. Антигравитационный проект
Теоретические основы работы устройства
Порядок сборки устройства
Сборка платы ионного генератора
Порядок наладки устройства
Замечания
Привязывание
Руководство по поиску неисправностей
Проблема 1: подъемный аппарат не движется, и не слышен шипящий звук
Проблема 2: подъемный аппарат не движется, источник питания высокого напряжения не подает признаков жизни
Проблема 3: подъемный аппарат не движется из-за малой подъемной силы, слышен шипящий звук
Проблема 4: подъемный аппарат немного движется, но не поднимается
Проблема 5: подъемный аппарат движется, но возникает интенсивная электрическая дуга
Проблема 6: подъемный аппарат поднимается, но когда возникает дуга, то внезапно падает или теряет высоту
Проблема 7: подъемный аппарат поднимается и дергается на концах шнуров, но подъемная сила нестабильна
Проблема 8: между проводом заземления и проводом высокого напряжения возникает дуга
Проблема 9: подъемный аппарат поднимается, и сразу происходит короткое замыкание провода заземления и высокого напряжения
Проблема 10: подъемный аппарат поднимается и немедленно заваливается на одну сторону
Проблема 11: возникает вибрация проволоки короны во время подъема, и это вызывает изменение подъемной силы
Проблема 12: возникает вибрация корпуса из фольги, и это вызывает затруднения с подъемной силой
Проблема 13: подъемный аппарат издает шипящий звук, но не поднимается
Примечания автора: общие рекомендации по поиску неисправностей
Глава 2. Электрокинетическое оружие малой мощности
Теоретические основы работы устройства
Первый, предпочтительный метод электрокинетического ускорения
Второй метод электрокинетического ускорения
Описание принципиальной схемы устройства
Порядок сборки платы
Порядок сборки устройства
Предварительные электрические испытания
Достижение более высокой скорости
Глава 3. Импульсный генератор большой мощности
Общие сведения об устройстве
Схема и теория действия
Замечание
Порядок предварительной сборки устройства
Порядок окончательной сборки устройства
Предварительные электрические испытания
Основные испытания
Полезные для данного оборудования математические соотношения
Глава 4. Ускоритель масс
Теоретические основы работы устройства
Порядок сборки ускорителя масс и его функционирование
Глава 5. Термическое плазменное ружье
Теоретические основы работы устройства
Порядок сборки термического ружья
Особые замечания
Глава 6. Проект взрывателя провода
Теоретические основы работы устройства
Подключение и управление
Особые замечания
Глава 7. Магнитный деформатор банок
Подключение и управление
Особые замечания
Часть 2
Глава 8. Ручной газовый лазер на углекислом газе С02
Общее описание
Теоретические основы работы устройства
Работа схемы
Порядок сборки схемы питания лазера
Сборка лазерной головки
Электрические испытания лазера
Особые замечания
Опция фокусной линзы
Работа с батареей
Чистка выходной оптики
Чистка системы охлаждения
Время работы
Тестовая оснастка общего назначения для цепей с питанием от сети
Глава 9. Ручное лучевое ружье на базе полупроводникового диодного лазера
Применение
Теоретические основы работы устройства
Принципиальная схема диодного лазера
Порядок сборки диодного лазера
Предварительные электрические испытания схемы
Безопасность
Замечание
Повреждение от статического электричества
Защита от переходных процессов
Чрезмерный прямой ток
Обратные токи
Высокая температура
Глава 10. Оптический лазер дальнего действия
Глава 11. Ручной сверхъяркий зеленый лазер
Применение
Принципиальная схема лазера
Порядок сборки лазера
Предварительные электрические испытания
Коллимация и окончательная сборка лазера
Глава 12. Лазерная ограда
Особые замечания
Принципиальная схема лазера
Порядок конструирования оптического приемника и контроллера
Порядок конструирования генератора лазерного луча
Глава 13. Лазерное устройство прослушивания
Особые замечания
Теоретические основы работы устройства
Описание проекта
Составные части устройства
Лазерный передатчик
Принципиальная схема лазерного передатчика
Монтаж электронной сборочной платы лазера
Сборка готова к предварительным электрическим испытаниям
Особые замечания
Корпус и оптика
Изготовление
Окончательная сборка лазера
Конструирование модуля тестового звука
Лазерный приемник
Принципиальная схема устройства
Порядок сборки лазерного приемника
Предварительные электрические испытания устройства
Окончательная сборка устройства
Применение, безопасность и легализация системы
Настройка устройства с использованием прямого отражения
Сборка интегрированной системы для использования в полевых условиях
Детали устройства и описание их изготовления
Часть 3
Глава 14. Катушка Тесла с длиной искрового разряда 30 см
Будьте осторожны при работе с высоким напряжением
Катушка Тесла
Краткое изложение теории работы катушки Тесла
Начальные сведения о простой в изготовлении катушке Тесла
Принцип работы устройства
Порядок сборки устройства
Особые замечания
Предостережения и рекомендации по улучшению работы устройства
Эксперименты с использованием катушки
Глава 15. Катушка Тесла с длиной искрового разряда 5 см и управлением от таймера
Принципиальная схема устройства
Порядок сборки устройства
Предварительные электрические испытания
Окончательная сборка устройства
Глава 16. Плазменный и ионный проекты Тесла
Принципиальная электрическая схема устройства
Порядок сборки схемы
Предварительные электрические испытания устройства
Порядок сборки устройства
Электрические испытания и выбор функций
Эксперименты и практическое применение плазмы
Эксперименты и практическое применение ионов
Глава 17. Полупроводниковая катушка Тесла
из ГОТОВОГО строчного трансформатора
Принципиальная схема устройства
Порядок сборки устройства
Порядок проведения электрических испытаний
Глава 18. Генератор молний Тесла с длиной искрового разряда 75 см
Основные указания по технике безопасности перед началом работы
Принципиальная схема устройства (начало)
Принципиальная схема устройства (окончание)
Функциональное назначение основных компонентов устройства
Вторичная катушка LSI
Выходной терминал
Первичная катушка LP1
Взаимодействие
Искровой разрядник SPKGAP0
Первичный конденсатор СЗ
Дроссель высокой частоты СНК1
Порядок сборки устройства
Порядок электрических испытаний
Особые замечания
Часть 4
Глава 19. Лестница Иакова с движущейся плазмой
Происхождение названия
Общее описание устройства
Принципиальная схема устройства
Порядок сборки устройства
Электрические испытания устройства
Глава 20. Удивительный генератор плазменного торнадо
Теория работы устройства
Описание проекта
Порядок сборки устройства
Демонстрационные эффекты и их применение
Особые замечания
Глава 21. Плазменный световой меч
Теоретические основы работы схемы
Конструкция устройства
Порядок изготовления устройства
Порядок сборки устройства
Тестовые точки и предложения по поиску неисправностей
Особые замечания
Батареи
Применение
Часть 5
Глава 22. Ионный лучевой пистолет
Принципиальная схема устройства
Порядок изготовления устройства
Порядок сборки платы
Электрические испытания устройства
Механическая сборка устройства
Действие устройства и его применение
Эксперименты с устройством
Рассказ об отрицательных ионах
Особые замечания
Глава 23. Прибор ночного видения
Общее описание устройства
Краткая теория работы устройства
Принципиальная схема устройства
Порядок сборки схемы высоковольтного источника напряжения
Электрические испытания макетной платы
Изготовление и механическая сборка устройства
Особые замечания
Глава 24. Устройство глушения рыбы и добывания червей
Общее описание устройства
Принципиальная схема устройства
Порядок сборки устройства
Предварительные электрические испытания субсборки
Окончательная сборка
Работа устройства
Проверка работоспособности устройства
Глава 25. Электромагнитный импульсный генератор
Общее описание устройства
Цель проекта
Риск
Теория
Конденсатор
Катушка индуктивности
Искровой разрядник
Переключатель с взрыванием провода (высокочастотный импульс высокой энергии)
Радиочастотный дроссель
Резистор R1
Зарядное устройство
Сборка устройства
Применение устройства
Источники приобретения компонентов и деталей
Часть 6
Глава 26. Ультразвуковой микрофон
Применение устройства
Принципиальная схема устройства
Порядок сборки устройства
Предварительные электрические испытания
Особое замечание: использование стоячей волны
Дополнительное замечание по поводу применения устройства
Запись выходного сигнала
Глава 27. Фазер болевого поля
Принципиальная схема устройства
Порядок сборки устройства
Предварительные электрические испытания
Окончательная сборка
Глава 28. Защитная система с созданием болевого поля
Описание проекта
Описание схемы запуска
Описание схемы обнаружения
Изготовление
Окончательная сборка
Тестирование устройства
Тестирование сенсорно-детекторной схемы
Особые замечания
Применение и размещение устройства
Предупреждение
Общая информация об ультразвуковых устройствах
Предметный указатель
Исследуем удивительный мир ферритов / SimpleTesla / Сообщество разработчиков электроники
Началось всё с того, что пропала из продажи марка ферритовых колец P4, производимая ACME Electronics Corporation.Мы их успешно использовали в течении предыдущих 6-ти лет практически для всех ферромагнитных нужд, большинство из которых естественно составляла намотка GDT и токовых трансформаторов. 🙂
По сути, мы просто использовали ту марку феррита которая работает, и которую проще всего достать(P4 действительно продавались почти в каждом ларьке). Но на сегодняшний же день достать её всё более и более проблематично, так что пришла пора найти P4 замену.
Изначально я хотел лишь проверить сигналы с нескольких доступных в продаже колец, но с любопытством ситуация быстро переросла практически в собирательство любых попавшихся под руку ферритов с целью исследования. Так же, было прочтено много-много материалов из сети дабы разобраться в каждой ранее непонятной мне мелочи.
Итогом стала данная статья, где я попробую подробней рассказать о такой замечательной штуке как мягкие ферромагнетики, а так же предоставить результаты тестов, среди которых есть весьма любопытные открытия. 🙂
Метод тестирования
Об академическом исследовании ферритов:
На самом деле исследование ферритов – это достаточно сложная процедура, представляющая из себя целую научную работу на каждый исследуемый образец.Требуется определять размер гранул феррита под микроскопом, измерять сопротивление отдельной гранулы, снимать петли гистерезиста на разных частотах, отрисовывать графики и делать множество расчётов дабы разделить источники потерь.
Это слишком сложный тест дабы прогонять через него большое количество ферритов, но посмотреть на подобную работу по прежнему может быть интересно.
Вот к примеру исследование материала Epcos N87, выполненное политехническим университетом в Бухаресте: www.scientificbulletin.upb.ro/rev_docs_arhiva/full64f_313335.pdf
Меня же в основном интересует лишь практический результат – способен ли материал в принципе передавать прямоугольник в диапазоне 100-300 кГц, насколько он склонен к насыщению, и насколько приемлемые у него потери.
Есть достаточно простой способ, позволяющий получить эту информацию даже о неизвестных сердечниках – для которых за неимением данных просто нельзя что-то расчитать через формулы.
Не редко, даже когда есть название материала – даташит на него может не гуглиться, или быть слишком скудным на информацию, например опуская такие необходимые детали как B-H петля гистерезиса(см. ниже, как правильно расчитать количество витков).
Дабы определить на что способен сердечник – достаточно намотать на нём трансформатор с известным количеством витков, и подать на первичку прямоугольник.
При приложенном постоянном напряжении ток через индуктивность первички растёт линейно, вплоть до момента пока амплитуда поля не достигнет точки насыщения для феррита. Этот момент нам и нужно словить, чем шире период перед насыщением – тем меньшую частоту можно пропустить через сердечник при данном количестве витков.
Подробней об эффекте насыщения:
Сам эффект насыщения(англ. saturation) исходит от того что материалы могут быть намагничены только до определённого порога, например 300 мТесла для типичного MnZn феррита, или 1.6 Тесла для железа.На магнитное поле свыше порога насыщения материал просто не реагирует, что в случае трансформатора приведёт к двум очень нежелательным эффектам: первичка перестаёт сопротивляться току и уходит в закорот, а напряжение на вторичке начинает заваливаться пока не упадёт в 0. В случае GDT это может одновременно и покоцать драйвер, и взорвать силовуху.
Избежать эффекта насыщения – и есть главная задача при правильной намотке трансформаторов.
Вот неплохая картинка из сети, слева чисто графическое изображение, как длина импульса может быть безопасной длины, максимальной, или выходящей за предел насыщения.
Справа показана реальная осциллограмма тока через первичку, куда был подан прямоугольник – токовый пик это как раз момент где первичка уходит в закорот из-за насыщения феррита.
Тестировать ферриты можно как одиночным импульсом, так и прямоугольником – последний предпочтительней т.к. это повторяющийся процесс и его проще ловить осциллографом.
Что же, теперь подробней о методе которым проверялись кольца из нашей статьи.
Нам понадобится осциллограф, и хороший драйвер затвора через который мы будем гонять исследуемое кольцо.
В моём случае сетап выглядел вот так:
В качестве драйвера применён SimpleDriver v2.3, модифицированный для работы в CW режиме.
Для этого драйверная часть была подключена в обход LM317, сама плата запитана от 18В, и заменён резисторный делитель схемы UVLO дабы сдвинуть порог срабатывания до 15-ти вольт. Изменять драйверную схему не требуется благодаря наличию RD-цепочек на затворах FDD8424;
Тест сердечников проходит в 3 этапа:
1. Заряд/разряд ёмкости в 10 нФ, что является эквивалентом затворов полумоста из MOSFET/IGBT транзисторов в TO-247.
Количество витков для начала будет фиксированным и составлять 4 витка.
Частота драйва: 300 кГц, а затем 100 кГц(границы интересуемого нас диапазона). По осциллограмме мы сможем сравнить ферриты между собой – при условии что у них примерно одинаковые физ. параметры;
2. Только самые продвинутые ферриты выдержат 100 кГц при 4-х витках без ухода в насыщение. Если же феррит не тянет – добавляем ему витков дабы увеличить индуктивность первички.
При большей индуктивности ток от приложенного напряжения растёт медленнее, и становится возможным гонять феррит на более низких частотах перед тем как тот достигнет насыщения;
3. И наконец – тест на потери. 10 нФ емкость заменяется на 100 нФ, что уже соответствует мосту из 8-ми IGBT в TO-247. Мы начинаем гонять эту ёмкость в CW, что в случае драйва от SD соответствует около 30 Вт мощности. Если феррит не предназначен для работы на наших частотах – он вскипит практически за секунды.
Да, при такой мощности на резисторе и даже конденсаторе выделяется масса тепла – их нужно окунуть в жидкость для охлаждения.
Подробно, о расчёте количества витков для известных сердечников:
Хотя статья почти полностью посвящена экспериментальному методу подбора витков – она была бы не полна без инструкции как количество витков можно расчитать математически.Для этого есть формулы, и даже онлайн-калькуляторы, однако мало кто из людей умеет ими правильно пользоваться.
Например, известный калькуляторчик GDT из Калькулятории: tqfp.org/calculatoria/gdt/
Обычно, всё посчитав он выдаёт пользователю какое-то непонятное значение, например 1 или 2 витка — которые более того не работают с трансформатором на практике.
Происходит это т.к. при вводе данных юзер не учитывается большое количество нюансов.
Например, графа «амплитуда индукции магнитного поля, мТл». Человек просто посмотрит это значение в даташите, например 490 mT для Epcos N87. Однако ввести его в калькулятор будет неправильно, ибо как минимум это значение для 25-ти °C – эта температура будет превышена как при летней погоде(50°C в корпусах приборов это норма), так и от потерь при работе – феррит может разогреваться до 80°C при макс. нагрузке. По даташиту, значение магнитной индукции при 100 градусах уже падает до 390 мТ…
Однако и это значение не подходит формуле. 🙂
Вот на этом графике, чуть поглубже в даташите видно, что область BH графика с линейной характеристикой лежит значительно ниже чем макс. значение(B-H curve — зависимость магнитного потока от мощности магнитного поля).
Уже после этой точки феррит начинает насыщаться и линейность теряется:
Число в калькулятор снижается уже в 3-й раз, и теперь достигает 300 миллиТесла. 🙂
Однако и это ещё не всё.
Теперь добавим погрешности, например формула расчитана на то, что частотой в ней будет синусоида… Однако мы подаём прямоугольник, и таковой представляет из себя большое количество синусоид большей частоты.
Т.е. значение, которое мы записываем в поле «Рабочая частота, кГц» уже не совсем соответствует требованиям формулы.
Сами сердечники ещё имеют погрешность, их проницаемость из-за manufacturing tolerance может плавать аж на 10-15% в зависимости даже не от партии к партии, а от кольца к кольцу.
Особенно в старых ферритах по типу отечественного М2000НМ.
Когда феррит имеет округлости в форме – ещё сложно точно измерить его сечение(это нужно делать проволочкой, а не штангенциркулем).
В итоге накапливаются доп. погрешности, скомпенсировать которые можно разве что ещё дополнительным снижением значения амп. магн. поля – например гоняя кольцо на 85% от амплитуды линейной области B-H графика при 100 градусах.
Итого, значение в формулу у нас упало аж до 255 мТ от оригинальных 490 мТ из даташита – практически в 2 раза.
Если забить в калькулятор данные для GDT в SimpleTesla с учётом вышеперечисленного – он выдаёт нам правильные 4 витка, которые отлично работают. 🙂
Главная проблема мат. расчётов – это то что на материалы редко можно найти такой подробный даташит как у Epcos N87,
не редко другие даташиты полностью упускают B-H график при 100°C, что делает расчёт каких-либо моточных изделий практически невозможным.
Без графика единственным надёжным вариантом остаётся лишь экспериментальный способ подбора витков.
Кстати, может возникнуть желание просто намотать витков побольше, дабы сердечник уж точно не уходил в насыщение(в сети можно встретить конструкции где у GDT по 10-20 витков), однако так делать не стоит – не достигая пределов по амплитуде поля мы по сути перестаём эффективно использовать возможности кольца.
Кроме того, лишняя индуктивность может стать источником звона уже на реальных транзисторах во время переключения тока.
Больше информации о расчёте витков для ферритовых трансформаторов можно найти по ссылкам ниже:
makingcircuits.com/blog/how-to-calculate-ferrite-transformer-for-smps/
vpayaem.ru/information19.html
Что же, я думаю теории будет достаточно – приступим к практике!
Тестирование кандидатов на замену P4:
На самом деле их не так много, без особого труда на рынке можно достать следующие марки:TP4A от TDG Group
Параметрами по идее лучше чем P4 и N87, однако даташит на TP4A весьма скудный:www.tdgcore.com/Private/Files/5420e155d57446ac8c9f.3 при 200 мТ, 100 кГц.
На 4-х витках держит переключение 100 кГц и 300 кГц, тест на прожиг так же проходит:
Стоят 7 UAH/штучку 18x10x8, что очень(!) дешево. 3 образца были куплены в РКС Компонентах. Отличное колечко!
PC40 от TDK
Он много где упоминается, но толкового даташита на материал мне найти не удалось, только вот это:product.tdk.com/info/en/catalog/datasheets/ferrite_mn-zn_material_characteristics_en.pdf
Параметры на первый взгляд не плохие: 500 мТ индукция, 2300 ui проницаемость.
Но ведёт себя материал фигово, при 4-х витках на 100 кГц он почти насыщается – нужно доматывать виток.
Это значит что линейная область B-H графика у него лежит достаточно низко.
3 образца были куплены в 9В на радиорынке Караваевы Дачи, по 12 UAH/штучку.
EPCOS N87
Наверное, самый известный general purpose феррит, присутствующий на рынке уже почти 15 лет. 🙂Примечательно, что хотя N87 и прочую линейку ферритов до сих пор приписывают конторе Epcos – та ещё в 2009-м была с потрохами выкуплена TDK и теперь является не более чем подразделением. Уже как 10 лет это TDK:
www.tdk-electronics.tdk.com/download/528882/71e02c7b9384de1331b3f625ce4b2123/pdf-n87.pdf
Тест колечко проходит, во время прожига не греется. Материал отличнейший, единственная его проблема – это цена.
Колечко 20x10x6 мм сегодня стоит 28 UAH, или же чуть больше $1/штуку.
ACME P4
О названии производителя:
Одному мне название напомнило мультфильм где койот гонялся за фиолетовой птицей? 😀
Назвать свою контору ACME – это ещё тот прикол. С 30-х и по 90-е года, когда США были мировым производителем товаров – это было собирательное для американского низкокачественного ширпотреба(от «american companies make everything»), который мог бабахнуть в руках или подвести в самый нужный момент. По этому у койота взрывался сам детонатор когда тот пытался бабахнуть птицу шашками с динамитом:
Сегодняшние китайские аналоги названия это NoName Brand или же Wun Hung-Lo Factory. 🙂
… но, не будем отвлекаться от темы ферритов.
Купить P4 сегодня уже напряг, но у меня ещё осталось около десятка сердечников. Конкретного даташита на материал нет, но по крупицам можно собрать необходимую информацию:
www.acme-ferrite.com.tw/en/material_p4.asp
www.acme-ferrite.com.tw/en/images/pro/p4material.pdf
На 100 кГц чуть-чуть не дотягивает, начинает сваливаться в насыщение – линейная область B-H графика у этого материала лежит достаточно низко, возможно даже ниже отметки в 300 мТ.
В принципе, какими-то фантастическими возможностями этот феррит не обладает – такой себе среднячок.
Популярность набрал сугубо из-за своей массовости и дешевизны, у нас продавался не дороже лежалых М2000НМ.
Советский М2000НМ
Запасы этого феррита наверное бесконечны. 🙂Продаются в любом ларьке обеих радиорынков в Киеве, причем закупать можно чуть ли не оптовыми партиями. Большинство сердечников были изготовлены ещё в 80-е, и параметрами этот материал далеко не блещет.
Производитель даже не рекомендует применять его на частоте выше 100 кГц. Наш тест показывает следующую картину:
Как можно видеть – он вполне удовлетворительно держится и на частоте 300 кГц, но вот на 100 кГц при 4-х витках уже уходит в насыщение. Это влияет та самая низкая индукция насыщения, линейная область которой лежит ещё ниже. Однако, даже такой феррит вполне можно применять – достаточно намотать 6 витков вместо 4-х(уменьшить магнитную индукцию на 33%) и тот начнет выдавать честный прямоугольник. Вот сравнение сигналов с N87 на 4-х витках и М2000НМ при 6-ти:
На самом деле слабые параметры – это ещё не последняя проблема наших колечек. У этого феррита очень большие кристаллы, в отдельных случаях их даже видно невооруженным глазом, как те переливаются(можно было наблюдать на образцах ранних партий). Выливается это в большой разлёт параметров даже не от партии к партии, а прямо от кольца к кольцу. Я протестировал 5 колечек, и в насыщение на 100 кГц они уходили в разное время, наверное с разлётом в 10%, что очень не мало. Если гонять наш феррит на пределе возможностей то обязательно нужно проверять выходной сигнал осциллографом.
Примечательные ферромагнетики:
Большинство из них не предназначались производителем для интересуемых нами целей.Это просто те материалы, которые мне удалось собрать по дому – однако давайте и их прогоним через стандартный тест, так сказать для расширения кругозора. 🙂
Распыленное железо
Наверное, любимая западня всех начинающих в силовой электронике. 🙂Обычно такие кольца попадаются в желто-белом, или салатово-синем окрасе – новички принимают их за феррит и выкусывают из старых ATX блоков питания. Схемы на них естественно не запускаются, и когда человек идёт на форум – всем всё сразу понятно только по цвету колечка.
На самом деле, цветовые кода powdered iron колец предусматривают аж 13 вариантов, так что сугубо по цвету ориентироваться нельзя. Мне когда-то пападались полностью зелёные и чёрные кольца, которые тоже в итоге оказались распыленным железом и обеспечили увлекательные часы дебага. Проверить неизвестное кольцо наверняка можно только двумя способами: либо счистив краску надфилем(под ней будет блестящий металл), либо же проверив сигналы осциллографом.
В нашем тесте все 4 кольца выдают примерно похожую картину:
При 4-х витках кольцо распыленного железа сразу насыщается, т.к. основная фича этого материала – равномерно распределённые немагнитные зазоры, от чего проницаемость таких колец составляет всего 14-100 ui в зависимости от подтипа.
Ошибочно принято считать, что подобный материал годится не более чем для индукторов или фильтров синфазной помехи, глобально предназначаясь для частот сетевого диапазона 50-60 Гц.
На самом деле это заблуждение, данные колечки не представляют собой цельный кусок железа как сетевые трансформаторы – это железная пудра, которую смешивают с эпоксидкой и после заливают под давлением в форму. После схватывания получается материал с определёнными супер-способностям, а в частности:
1. Гранулы не находятся между собой в электрическом контакте, что драматически снижает нагрев этого материала от высокочастотных токов;
2. Мелкие гранулы в добавок имеют небольшие потери на перемагничивание, что позволяет распыленному железу работать на частотах вплоть до 500 кГц, а в случае отдельных материалов – до 2.5 МГц!
3. Т.к. это по прежнему железо – оно сохраняет высокую устойчиваость к магнитному полю, выдерживая вплоть до 1.6 Тесла(как у неодимовых магнитов), что очень впечатляет. Типичный магнитомягкий феррит уходит в насыщение ещё при 300 миллиТесла.
Дабы продемонстрировать работу этих колец на высоких частотах – я домотал первичку до 19-ти витков, кольцо перестало насыщаться и выдало тот самый прямоугольник 300 кГц. 🙂
Хотя это и работает, железо всё же сильно проигрывает ферритам если применяется как высокочастотный трансформатор. Можно заметить что на осциллограмме фронт прямоугольника более плавный нежели с ферритов, это вызвано тем что железо отфильтровывает резкий фронт тепловыми потерями(не пропускает высокочастотную составляющую прямоугольника). Железо так же имеет намного большие потери чем у феррита, прокачивая через кольцо 300 кГц на 10 нФ оно уже становится тёплым, а на тесте прожига в 30 Вт(драйв 100 нФ ёмкости) оно буквально вскипает за секунды.
Поставить железное колечко намеренно в качестве трансформатора могут только с целью снижения стоимости производства прибора, т.к. распыленное железо в разы дешевле изделий из ферритов.
Основное же направление в использовании – это намотка индукторов, и для этой цели powdered iron даже выигрывает у феррита. Из-за мощной устойчивости в 1.6 Тесла возможно мотать индукторы даже меньшего размера чем если бы они были из феррита с зазором.
Подробней ознакомиться с типами и цветовой маркировкой железных колец можно здесь:
www.coretech.com.ua/docs/coretech_iron_powder_cores_%5B2012%5D.pdf
Ш-образный феррит от импульсного блока питания
Казалось бы, большинство таких питальников работают на частоте 60-300 кГц, и ферриты от них вполне должны работать в качестве GDT… Однако, картина на осциллографе говорит об обратном, сигнал с него 1 в 1 как с железа. 🙂На самом деле феррит здесь такой как нужно, эффект на осциллограмме вызван наличием зазора в магнитопроводе(по центру), что в десятки раз повысило магнитное сопротивление контура.
Получается так потому, что воздух и даже вакуум тоже имеют некоторую магнитную проницаемость – итого зазор не обрывает магнитный контур, а встраивается в него, изменяя параметры.
Кстати, проницаемость пустого пространства μ0 – это одна из фундаментальных констант нашей вселенной и составляет она 0.0000012566370614 H/m, или же 1 μi.
Здесь много текста относительно зазоров в сердечниках:
Для удобства расчётов трансформатора на сердечнике с зазором придумали такую штуку как эквивалентная проницаемость μe – кольцо воспринимается как сделанное из менее проницаемого материала, чтобы при том же сечении и длине магнитопровода получалось такое же магнитное сопротивление.К примеру, если бы наш Ш-образный сердечник не имел зазора, но был сделан из материала с проницаемостью 75 ui – это 100% эквивалентно такому же сердечнику с проницаемостью 2200 ui, но с зазором 0.2 мм.
Исключив зазор такой хитростью – μe можно забивать в стандартную формулу обмоток для сердечника без зазора.
Кстати, у рассматриваемого ранее распыленного железа тоже проницаемость сугубо эквивалентная.
Чистое железо имеет проницаемость 500 μi, но дабы не иметь проблем с расчётом миллиона микроскопических зазоров в виде эпоксидки – материал сразу позиционируют как 75 μe.
Да, относительно феррита с зазором и распыленного железа может возникнуть вопрос:
Если эти сердечники выдерживают больший ток через первичку перед насыщением – почему тогда он сразу уходит в насыщение на осциллограммах?
Ответ прост – от проницаемости зависит то сколько индуктивности нам даёт каждый виток в первичке.
Если 4 витка вокруг 20x10x6 колечка N87(2200 ui) дают нам 30 мкГн, то такая же обмотка на кольце распыленного железа(75 ui) дадут нам всего 0.9 мкГн. Приложенный прямоугольник на такую первичку быстро взлетает по току и насыщает кольцо.
Дабы получить 30 мкГн например на пыльном железе(75 μe) – нам понадобится аж 133 витка… Но у железа есть фича – 1.6 Тесла индукция насыщения – именно на железе можно намотать в 5 раз меньше витков и железное колечко не будет насыщаться.
По этому в разделе про распыленное железо получилось выжать какой-никакой сигнал всего при 19-ти витках.
Феррит с зазором же – по прежнему выдерживает всего 300 мТ, так что ему 133 витка обязательны.
В чём же тогда смысл добавлять зазор ферриту?
«Зазорные» сердечники в основном используют для преобразователей в топологии flyback(обратоходовый преобразователь). Они работают по другому принципу нежели прямоходовые преобразователи(в т.ч. и GDT) – и зазор там нужен дабы пропуская большой ток через первичку запасать энергию в индуктивности.
Подробно flyback топологию в этой статье мы рассматривать не будем т.к. это займет не менее ещё одной статьи.
Достаточно сказать что ферритовые сердечники с зазором нет смысла использовать для forward преобразователей – вам просто придётся наматывать 100+ витков дабы скомпенсировать низкую проницаемость, вместо нескольких витков при замкнутом контуре.
Ферритовая бусина с USB кабеля
Достаточно большим сюрпризом оказались фильтры для кабелей, которые казалось бы – одна из самых бесполезных штуковин в электронике. Всё, что они делают на кабелях – это гасят небольшую толику излучения, которая проскакивает во время общения по USB шине. Фильтры были навязаны законом об EMC-совместимости, но на практике ничего не решающем т.к. эфир давно промышленно глушится миллионом дешевых китайских импульсных БП. С любого кабеля можно этот фильтр снять без последствий, а многие китайские кабеля и вообще производятся без него.В любом случае, оказалось что феррит этих бусин просто идеально подходит на роль GDT!
В достаточно широком диапазоне 80-400 кГц он выдаёт идеальный прямоугольник при 4-х витках, и не греется даже если пропускать сквозь него 30 Вт в CW. Почему так, ведь по идее данный феррит должен обладать большими потерями? А просто, эти потери возникают только начиная с сотен МГц, т.к. даже стандартный полезный сигнал USB 2.0 это 12 МГц.
Для низкочастотного трансформатора это замечательное кольцо – т.ч. можно начинать курочить старые USB кабеля. 🙂
Думаю особенно пригодится начинающим, у кого возникают проблемы с поиском ферритовых колец хороших марок. Старые кабеля есть практически в каждом доме по целой связке.
Всего было протестировано 3 больших бусин и 1 мелкая, причем мелкая была снята уже с аудиокабеля – совершенно не понимаю что она там делала. Все 4 бусины прошли тест на отлично.
Стоит правда подметить, что годятся только литые бусины. Разборные и защёлкивающиеся хоть и сделаны из того же феррита – они часто не смыкаются до конца, образуя крохотный зазор как на Ш-образном феррите.
Помехи такая бусина наверняка будет глушить не менее эффективно, а вот проводить сигнал уже будет фигово.
П-образные ферриты от синфазных фильтров
Это ещё одно место, где повседневно можно встретить ферритовый сердечник.Подобные фильтры ставят на сетевом входе импульсных блоков питания, где они отделяют высокочастотный шум генерации от проникновения обратно в сеть.
1. Первым на нашем тесте феррит от фильтра серии SU16VD от Kemet. От него удалось найти весьма адекватный даташит, однако упоминаются в нём лишь данные о помехоподавлении и ни капли о ферромагнетике который юзается:
content.kemet.com/datasheets/KEM_LF0021_SU16VD.pdf
Не смотря на то что там не имеется никаких зазоров – сердечник достаточно быстро уходит в насыщение.
Похоже, что это материал NiZn(никель-цинк), проницаемость которых обычно в районе 800 μi.
Такие ферриты обычно расчитаны на работу от 1 МГц и выше.
2. Этот сердечник был вытащен из фильтра японского блока питания 80-х годов, по всей видимости от древнего VHS видеомагнитофона. Он, в отличии от предыдущего выдаёт абсолютно адекватную форму сигнала при стандартном тесте, т.е. сделан из какой-то марки MnZn ферритов:
В итоге, всё что можно сказать о сердечниках из фильтров – это то что они могут попасться из самых разных материалов, что не удивительно, ведь от этого зависит полоса подавления.
Если и вытаскивать такие сердечники, то их стоит обязательно проверять.
Подведем итоги
Сказать по правде – я был весьма удивлен тем насколько схоже ведут себя мягкие ферриты.На рынке доступно огромное количество материалов от самых разных производителей, материалы производятся по разным технологиям, имеют разный химический состав, и им даже даются брендовые имена…
Когда-то прямо были баталии на форумах, где народ спорил относительно марок одного и того же феррита MnZn: одни хаяли отечественную марку М2000НМ, мол та плохая и не годится никуда, а другие рядом обожествляли импортный Epcos N87. 🙂
На практике же оказалось проще — все мягкие ферромагнетики работают примерно одинаково.
Нет, конечно среди них есть различия: отличается амплитуда намагничивания, у них разная проницаемость, разные потери на перемагничивание, потери от токов Фуко и т.д… Учтя все параметры материала можно подобрать такой, который будет более оптимален в определённых условиях – например на частоте 5 кГц, 100 кГц, 500 кГц, или 2 МГц. Но в конечном итоге все эти материалы работают через одни и те же принципы электромагнетизма, и более того работают в широких диапазонах, очень хорошо перекрывая друг друга по возможностям.
Главное оказалось – это всегда правильно посчитать обмотку дабы избежать насыщения.
P.S. Статейка получилась просто ужасно раздутой, так что кто дочитал – молодцы. 🙂
Если у кого есть замечания или вопросы относительно материала – буду рад зачитать ваши комментарии.
Так же мне вседа можно написать на почту: [email protected]
Юноше, обдумывающему электронику. Ключи к материалу для самостоятельного изучения
Перевод учебника «Искусство схемотехники» пополнился Частью 3, в которой разбираются полевые транзисторы. Книга приобрела целостный, хотя всё ещё не окончательный, вид. На данный момент отсутствуют три части — 11 («Программируемая логика»), 14 («Компьютеры, контроллеры и шины данных»), 15 («Микроконтроллеры») — и таблицы. Таблицы отложены до завершения перевода (там почти одни цифры, с которыми можно ознакомиться и в оригинале), а остающиеся темы при всём уважении к авторам лучше изучать по другим источникам. В анонсе перевода среди жалоб на несовершенство мира была высказана мысль о необходимости грамотного руководства освоением нового материала. Здесь предлагается метод изучения, рационализирующий данный процесс и некоторые соображения о повышении КПД знаний, относящиеся к системе Цеттелкастен.Итак, к основному материалу книги добавилась Часть 3 («Полевые транзисторы»), рассказывающая о линейных усилителях, повторителях и ключах на полевых приборах с p-n переходом и с изолированным затвором. Но, если вы новичок, обдумывающий электронику, а равно и не обдумывающий, но соприкасающийся с ней по работе, начинать знакомство с данной темой следует с другого конца и по специфической схеме. Но обо всём по порядку.
«Искусство схемотехники» — учебник по практическому построению электронных схем, выросший из односеместрового лабораторного курса по электронике Гарвардского университета. Он достаточно полон, подробен и самодостаточен (*) для самостоятельного изучения, причём не требует от ученика специальной подготовки. Всем известно, что «королевских путей» к знанию не существует, но одна уловка всё же есть. Это принцип Паретто, гласящий, что 20% людей выпивает 80% пива. Иначе говоря, 20% знаний и навыков закроют 80% типовых задач. Осталось найти эти 20%. Как раз здесь совершенно случайно из ближайших кустов выхожу я во всём белом. Ниже предлагается путеводный ключ, лучше всего, на мой взгляд, подходящий для изучения учебника неспециалистом. Замечу, что для специалиста книга тоже подойдёт — диапазон у неё совершенно удивительный, просто специалист знает, чего хочет, и ключ ему не нужен.
Электроника, как всем известно, — это «наука о контактах». Предлагается обобщить данное определение до уровня «науки о межсоединениях», в число которых входят как сами контакты, так и линии связи, входы-выходы компонентов и шины питания. При таком рассмотрении и в условиях тотальной электротехнической безграмотности страждущих, важнейшей из частей учебника становится Часть 12 («Сопряжение логических сигналов»). В ней в простой для понимания и использования форме классифицированы виды источников (транзисторы, операционные усилители, схемы цифровой логики, мощные интегральные драйверы и внешние линии) и приёмников (нагрузки постоянного и переменного тока, сильно- слаботочные и вообще всякие плюс те же внешние линии). Сопряжение входов и выходов в общем случае является хотя и не тривиальной, но хорошо изученной областью, а предлагаемые в книге способы закроют большую часть типовых потребностей. Описываемые авторами методы будут в высшей степени полезны программистам, соприкасающимся с аппаратурой, шинами передачи данных и портами ввода-вывода. Часть 12 ориентирована в первую очередь на сопряжение цифровых систем с датчиками и исполнительными устройствами и даёт общее представление о путях распространения сигналов, защите от статики, методах умощнения сигналов управления и преодоления изоляционных барьеров. Вы удивитесь, сколь проста (но только в первом приближении) эта сторона электроники, и сколь сильно она расширяет понимание принципов взаимодействия с электронными устройствами.
После освоения способов передачи сигналов стоит изучить Часть 13 («Аналого-цифровые преобразования»). Здесь даются базовые сведения об АЦП и ЦАПах, форматах их данных, ошибках, входных и выходных характеристиках. Эта часть книги позволит понимать процесс перевода аналогового сигнала в цифру на более глубоком уровне и полнее воспринимать аналого-цифровой тракт в целом. В этой же Части 13 есть описание методов синтеза частот, которые дополняют создание аналоговых сигналов с помощью ЦАПов.
Материал Части 12 и 13 закрывает порядка 60% вопросов взаимодействия вычислительных систем с внешним миром. Следующим шагом будет Часть 4 («Операционные усилители»). Здесь даются базовые сведения об этом главном строительном элементе аналоговых схем. Углублённое изучение ОУ продолжается в Части 5 («Точные схемы»). В Части 5 подробно разбираются источники ошибок и методы их компенсации. Её будет полезно пробежать в ознакомительных целях, потому что здесь описываются возможные варианты операционных усилителей, и такие сведения будут полезны просто для расширения кругозора.
Теперь у вас есть 80%. На этом, наверно, стоит остановиться, а книгу перевести из статуса «учебник» в статус «справочное пособие». Остальные темы, как-то: Часть 6 («Фильтры»), Часть 7 («Генераторы и таймеры»), Часть 8 («Проектирование малошумящей аппаратуры»), Часть 9 («Регуляторы напряжения и преобразователи мощности») и Часть 10 («Цифровая логика»), следует изучать, если есть конкретная задача или желание ознакомиться с вопросом.
Пара слов об основах — Части 1 («Основы»), Части 2 («Биполярные транзисторы») и Части 3 («Полевые транзисторы»). Не надо в них лезть ! Несколько парадоксальная рекомендация, ведь обычно изучение электроники начинается именно с этих трёх тем. Дело в том, что чем проще инструмент, тем больше умения требуется, чтобы с ним работать. Современная электроника нечасто требует перехода на уровень отдельных транзисторов. Знакомства с ОУ (Часть 4) и с параметрами внешних выводов ИМС (Часть 12) достаточно для подавляющего большинства задач. Всё остальное будет проникать в голову или вызывать специальный интерес по мере продвижения вперёд. Вся книга пронизана перекрёстными ссылками на сопутствующий, пояснительный или аналогичный материал из других частей. По ним надо ходить и пытаться разобраться, но фанатизм в этом направлении будет скорее вредить.
Надеюсь, этот скромный набор рекомендаций вам поможет.
Теперь пара слов об упоминавшейся на Хабре системе организации персональных знаний Цеттелкастен. Позволю высказать собственное мнение о предмете, которое возникло в момент редактирования перевода. В Части 3 (рис. 3.114 на стр. 212) приводится красивая схема расширения входного диапазона напряжений линейного стабилизатора. Она не вчера придумана, лично мне знакома более 10 лет, но, только проводя последнюю сверку с оригиналом, я понял, что речь идёт об обычном каскоде. Т.е. я перевёл Часть 9, где она встречалась, Часть 3, отредактировал, отформатировал в html, чтобы на самом последнем этапе перед публикацией понять довольно очевидную с самого начала вещь.
Это я к чему? Сама книга живёт со мной уже более 3 лет (а, может, я с ней живу?). Каждый раз, когда приходит время выкладывать на сайт новую часть, необходимо пробежать по тексту (поиском, конечно) и актуализировать спящие ссылки. И каждый раз глаз цепляется за какие-то новые детали и подробности, вылезают ошибки, шероховатости или такие вот озарения. Мне кажется, что основная задача Цеттелкастен — перебирать пачку случайно (или не случайно) выбранных карточек, чтобы освежить «заснувшие» данные в собственной голове или обнаружить вдруг новые связи. Если это так, то современные модные и молодёжные средства работы с заметками (программы, органайзеры, электронные таблицы) – вещь, не имеющая никаких преимуществ перед картоном, если не вовсе вредная. Оптимизация процесса здесь только мешает результату. Общение с базой знаний должно быть простым, но не должно быть быстрым, а, главное, не должно быть автоматизированным. Оно должно давать голове и глазам шанс зацепиться за какую-нибудь фразу или мысль. То есть, гораздо продуктивнее просто взять в руку карточки, давно не видевшие свет, и потасовать их, вчитываясь и, возможно, прогуливаясь по ссылкам на смежный материал. Цеттелкастен — искусство перечитывать то, что уже прочитано когда-то. Перечитывать, чтобы ещё аккуратнее вставить кусочек мозаики на прежнее или, возможно, иное место общей картины. Поэтому, читая «Искусство схемотехники», обязательно ходите по ссылкам и пытайтесь понять, что они вам говорят. Вот вам мой Цеттелкастен, всем, даром, и пусть никто не уйдёт обиженным.
(*)
«Пояснительные выражения объясняют темные мысли», поэтому везде, где мне случается зависнуть над фразой, схемой или формулой, я вставляю собственные комментарии. Исхожу при этом из того, что сам я тему знаю достаточно хорошо, и, если даже я затыкаюсь, то новичку точно требуются чуть более развёрнутые объяснения. Мои комментарии идут на вкусном абрикосовом фоне (и только на нём). ####### Ну, вы поняли ########.
Моя предыдущая публикация на Хабре об этой книге.
И собственно учебник, а то вдруг кто не знает.
Создание схемы сирены с использованием таймера 555
Если вы любитель электроники, то вы, должно быть, слышали об микросхеме таймера 555 и ее трех популярных схемах, а именно. нестабильный мультивибратор, бистабильный мультивибратор и моностабильный мультивибратор. Помимо этого, существуют другие популярные схемы, такие как микросхема таймера 555 в качестве переключателя и полицейский гудок , о которых мы говорили ранее. В дополнение к этому списку есть еще один тип схемы сирены, которую мы можем спроектировать с помощью этой ИС.Речь идет о схеме завывающей сирены, которая издает звуковой сигнал, интенсивность которого зависит от времени до нажатия кнопки. Мы можем использовать эту схему при проектировании систем безопасности.
В этом проекте мы будем использовать нестабильный режим ИС с некоторыми внешними компонентами для создания сирены. Для демонстрации я спроектировал схему на макете.
Компоненты, необходимые для построения цепи сиреныКомпоненты, необходимые для проектирования схемы сирены на макетной плате, приведены ниже:
- Макет
- Микросхема с таймером 555 и
- Резисторы: 22к, 100к, 33к, 220к * 2
- Конденсаторы: 100 мкФ, 10 нФ
- Транзисторы: BC547 и BC557
- аккумулятор 9В
- 8-омный динамик
Когда дело доходит до проектирования схем таймера, первое, что приходит на ум, – это микросхема таймера 555.Это самая старая технология, поэтому вы можете полагаться на нее вслепую, и, что самое главное, она доступна по цене. Внутренняя схема таймера 555 представлена ниже.
- PIN 1 и PIN 8: Они подключаются между землей и Vcc с помощью трех резисторов 5 кОм. Это также дает IC его культовое имя. Эти резисторы образуют схему делителя напряжения со значением 1/3 и 2/3 напряжения питания, поскольку контакт 1 является заземлением, а контакт 8 – Vcc. Неинвертирующий вход (+) одного компаратора подключен к выходу 1/3 делителя напряжения, а инвертирующий вход (-) другого компаратора подключен к выходу 2/3 делителя напряжения.
- PIN 2: Это триггерный вывод ИС, который подключен к инвертирующему входу (-) компаратора.
- PIN 3: Это выход ИС, который подключен через схему выходного драйвера к выходу триггера.
- PIN 4: Это вывод сброса, который подключен к контакту сброса триггера. Подключив этот вывод к земле, мы можем сбросить эту микросхему. Это причина, по которой мы видим в большинстве цепей 555, он подключен к Vcc.
- PIN 5: Это управляющий вывод, который подключен к 2/3 значения делителя напряжения и инвертирующего входа (-) компаратора. Если мы хотим изменить опорное напряжение, мы можем подать внешнее напряжение через этот вывод. Как правило, в большинстве схем таймера 555 мы видим, что этот вывод подключен к конденсатору для получения стабильного опорного напряжения.
- PIN 6: Он подключен к неинвертирующему (+) входу схемы компаратора, выход которой подключен к контакту сброса триггера.
- PIN 7: Это разрядный контакт, который подключен к коллектору BJT.
Принципиальная схема сигнальной сирены приведена ниже.
В этой схеме мы используем микросхему таймера 555 в нестабильном режиме. Как и в большинстве схем таймера 555, выводы 2 и 6 микросхемы соединены, а вывод 4 соединен с землей. Транзистор PNP подключен как переключатель между напряжением питания и контактом 8 IC.База этого транзистора подключена к конденсатору 100 мкФ через резистор 100 кОм. Выходной вывод 3 микросхемы подключен к базе NPN-транзистора. Этот транзистор работает как переключатель для управления выходным динамиком на 8 Ом.
Работа цепи сиреныИз схемы мы видим, что IC питается через транзистор PNP. Поскольку это транзистор PNP, это означает, что отрицательное напряжение на затворе включит его. Первоначально, когда источник питания включен, конденсатор начинает заряжаться через резисторы 100 кОм и 220 кОм, и из-за этого полностью заряженного конденсатора на затворе транзистора появляется положительное напряжение, которое его выключает.Когда мы нажимаем кнопку, конденсатор находит способ разрядиться через резистор 22 кОм, что в результате обеспечивает отрицательное напряжение на транзисторе, который его включает.
Это явление вызывает завывание сирены, потому что зарядка и разрядка конденсатора требует времени. По этой причине амплитуда сирены меняется в зависимости от времени нажатия кнопки.
Проверка цепи сиреныИзображения разработанной схемы приведены ниже.
Это все о создании сигнальной сирены на основе таймера 555 цепи . Видео, показывающее работу схемы, приведено в конце статьи. Надеюсь, вы поняли все о концепции, но все же, если у вас есть сомнения, не стесняйтесь оставлять комментарии ниже.
Создайте простую плату стерео аудиоусилителя с использованием TDA2822
Аудиоусилитель – это электронная схема, которая усиливает маломощные аудиосигналы до уровня, подходящего для управления громкоговорителем.Эти усилители используются в беспроводной связи и радиовещании, а также в звуковом оборудовании всех типов. Существует много классов усилителей, и мы ранее создали множество схем аудиоусилителей, от небольших усилителей мощностью 10 Вт до тяжелых усилителей мощности на 100 Вт.
В этом проекте мы собираемся создать усилитель звука с использованием TDA2822 IC , который является очень популярным двухканальным усилителем звука, обычно используемым для создания усилителей звука высокой мощности. Схема усилителя TDA2822 будет иметь одну интегральную схему усилителя TDA2822 и сможет управлять двумя динамиками с регулятором громкости.Кроме того, аудиовход для нашей платы усилителя может быть обеспечен непосредственно от аудиоразъема. Чтобы построить этот стереоусилитель TDA2822 на печатной плате, мы изготовили наши печатные платы от PCBWay, и мы соберем и протестируем то же самое в этом проекте.
Необходимые компоненты- TDA2822 Усилитель IC
- Конденсаторы (2 × 1000 мкФ, 4 × 10 мкФ, 2 × 0,1 мкФ, 1 × 100 мкФ)
- Резисторы (4 × 100 Ом)
- Винтовой зажим (3 × 2 контакта, 1 × 3 контакта)
- Потенциометр 2 × 10K
TDA2822 – это двойная микросхема усилителя звука малой мощности, которую можно настроить в стереорежиме или режиме моста.Он предлагает низкие кроссоверные искажения, низкий ток покоя и доступен в 8-контактном пластиковом двухрядном корпусе. Эта ИС может работать в широком диапазоне напряжений питания от 3 В до 15 В. Он специально разработан для использования в портативных радиоприемниках и транзисторных установках. Он может выдавать выходную мощность 0,65 Вт на канал в громкоговоритель 4 Ом при напряжении питания 6 В и 0,38 Вт на канал в громкоговоритель 8 Ом при напряжении питания 6 В в стереорежиме.
TDA2822 Технические характеристики:
- Напряжение питания: 3-15В
- Выходная мощность: 3.2 Вт
- Аудио – сопротивление нагрузки: 8 Ом
- Усиление: 39 дБ
- Рабочий ток питания: 12 мА
- Ib – Входной ток смещения: 0,1 мкА
- PSRR – Коэффициент подавления источника питания: 40 дБ
- Низкие искажения кроссовера
- . Низкий ток покоя
- . Мост или стерео конфигурация
Полная схема усилителя TDA2822 показана на изображении, приведенном ниже.Схема была нарисована с помощью EasyEDA. Помимо микросхемы TDA2822M, в ней используются два потенциометра, два динамика, а также некоторые конденсаторы и резисторы.
Левый динамик (Speaker1) подключен к выходному контакту 1 IC через электролитический конденсатор C8. Правый динамик (Speaker2) подключен к выходному контакту 2 через электролитический конденсатор C7. Инвертирующие входные контакты (Pin5 и Pin8) подключены к земле через конденсаторы фильтра C1 и C3. Неинвертирующие контакты (Pin7 и Pin6) являются входными контактами и подключены к потенциометрам через электролитические конденсаторы C10 и C11.Конденсаторы C10 и C11 подключены, чтобы блокировать прохождение любой составляющей постоянного тока от усилителя IC к выходной нагрузке. Любая составляющая постоянного тока от усилителя до нагрузки, которая в данном случае является динамиком, может повредить его или вызвать шум или искажение выходного звука. Pot1 и Pot2 работают как регуляторы громкости левого и правого каналов для обоих динамиков. Контакт 2 подключен к источнику постоянного тока, а контакт 4 подключен к земле. Электролитический конденсатор C2 подключен к V CC , а контакты заземления работают как конденсатор фильтра.
Изготовление печатной платы для платы стереоусилителя TDA2822Как только схема будет готова, мы можем приступить к разводке печатной платы. Вы можете спроектировать печатную плату с помощью любого программного обеспечения для печатных плат по вашему выбору. Мы использовали EasyEDA для изготовления печатной платы для этого проекта. Вы можете просмотреть любой слой (верхний, нижний, верхний слой, нижний шелк и т. Д.) Печатной платы, выбрав слой в окне «Слои». Помимо этого, вы также можете увидеть трехмерную модель печатной платы, как она будет выглядеть после изготовления.Ниже представлены виды 3D-модели верхнего и нижнего слоев печатной платы Pi Motor Driver HAT.
Макет печатной платы для указанной выше схемы также доступен для загрузки как Gerber по ссылке, приведенной ниже:
Файл Gerber для аудиоусилителя с использованием TDA2822
Заказ печатной платы в PCBWayТеперь, после доработки дизайна, можно переходить к заказу печатной платы:
Шаг 1: Перейдите на https: // www.pcbway.com/ и войдите в систему. Зарегистрируйтесь, если это ваш первый раз. Затем на вкладке PCB Prototype введите размеры вашей печатной платы, количество слоев и количество необходимых вам печатных плат.
Шаг 2: Продолжите, нажав кнопку «Цитировать сейчас». Вы попадете на страницу, где вам нужно будет установить несколько дополнительных параметров, таких как Тип платы, Слои, Материал для печатной платы, Толщина и другие; большинство из них выбраны по умолчанию, если вы выбираете какие-либо конкретные параметры, вы можете выбрать их соответственно.
Шаг 3: Последний шаг – загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBWAY проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату. Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена вам, как только вы это сделаете.
Сборка платы стереоусилителя TDA2822Через несколько дней после заказа мы получили нашу печатную плату TDA2822 в аккуратной упаковке, качество печатной платы как всегда было хорошим.Верхний и нижний слои платы показаны ниже:
Убедившись, что дорожки и следы правильные, я приступил к сборке печатной платы. Полностью спаянная плата выглядела так, как показано на изображении ниже:
Тестирование платы усилителя звука TDA2822Когда вы закончите сборку печатной платы, подключите динамики к выходным контактам левого и правого каналов. Выходная мощность ИС зависит от входного напряжения питания и выходной нагрузки.Выходная мощность встроенных операционных усилителей ИС представлена в таблице ниже.
Для тестирования я подключил два динамика на 32 Ом и запитал ИС от литий-полимерной батареи. Аудиовход предусмотрен со смартфона. Для приема звука со смартфона в телефон вставляется аудиоразъем 3,5 мм, и все готово.
Вот так просто собрать стереоусилитель Схема , используя TDA2822 с платой PCB.Полное рабочее видео проекта представлено ниже. Надеюсь, вам понравился проект, и вам было интересно создать свой собственный. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже.
200+ Лучшие мини-проекты электроники: схемы, рабочий процесс, код
Мы собрали лучшие и самые популярные проекты, которые помогают завершить базовую проектную работу в первые дни разработки. Вот огромный список из идей мини-проектов электроники вместе с источниками, где вы можете проверить все детали проекта. Каждая отдельная страница проекта содержит список компонентов, принципиальную схему, код, принцип работы и приложения.
В этом списке собраны наши собственные проекты DIY и несколько других проектов, выполненных любителями, также мы разделили по модулям.
Если вы хотите включить свой проект и помочь другим студентам, пожалуйста, напишите нам по электронной почте с описанием вашего проекта. Мы постараемся включить сюда ваш проект.
Вот список проектов:
Индикатор уровня воды:
Индикатор уровня воды – простой базовый известный проект в электронике.В нем используется простой механизм, который помогает определять и указывать уровень воды в верхнем резервуаре или любом другом резервуаре для воды. Его можно использовать в отелях, фабриках, жилых домах, коммерческих комплексах, канализации и т. Д.
Система дверного замка на основе пароля с использованием микроконтроллера 8051:
Эта система демонстрирует систему дверного замка на основе пароля, в которой один раз вводится правильный код или пароль. входит, дверь открывается, и заинтересованному лицу разрешается доступ в охраняемую зону.Через некоторое время дверь закроется автоматически. Он полностью функционален на основе пароля.
Роботизированное транспортное средство, управляемое сотовым телефоном:
Роботизированное транспортное средство, управляемое мобильным телефоном, основано на контроллере DTMF. Это без использования микроконтроллера. Функционировать объект будет через мобильный телефон. Его можно использовать в промышленности и системах видеонаблюдения.
Робот для обнаружения человека с использованием микроконтроллера 8051:
Основной принцип схемы – обнаружение человека с помощью датчика обнаружения человека.Беспроводной робот управляется вручную с помощью ПК. Используемая здесь беспроводная технология – это радиочастотная технология. Данные передаются на приемник через RF.
Робот, управляемый SMS:
Робот, управляемый GSM, или робот, управляемый SMS, – это беспроводной робот, который выполняет необходимые действия, получая набор инструкций в форме службы коротких сообщений (SMS).
Удаленная электронная бытовая техника, управляемая паролем:
Как управлять электроприборами с помощью устройства Android.Здесь модуль Bluetooth связан с микроконтроллером 8051. Этот Bluetooth получает команды от устройства Android-приложения по беспроводной связи.
Автоматическое освещение помещений с использованием Arduino и датчика PIR:
Это очень простой проект освещения для автоматического освещения помещений, в котором датчик Arduino и PIR автоматически включает и выключает освещение в помещении.
Система автоматического открывания дверей с использованием датчика PIR и Arduino:
В этом проекте реализована система автоматического открывания дверей на основе датчиков Arduino и PIR, после чего, обнаруживая любое движение человека, дверь открывается автоматически.Чаще всего мы видим такую функциональность в торговых центрах.
DIY RGB LED Matrix:
Это простой проект светодиодной матрицы, управляемый через приложение для Android. Этот проект может быть полезен при создании вывесок, прокручиваемых досок объявлений и т. Д.
Arduino 8 × 8 LED Matrix Interface:
Этот проект похож на проект выше, но использует Arduino с большим количеством светодиодов. В нем показано, как подключить светодиодную матрицу 8 × 8 к Arduino. Для этого проекта существует специальное приложение для Android, с помощью которого вы можете установить светодиодную матрицу 8 × 8 и управлять ею с телефона.
Arduino Управление двигателем постоянного тока с использованием L298N:
Используя этот проект, вы можете управлять простым двигателем постоянного тока с помощью очень популярного модуля драйвера двигателя L298N и Arduino. Вы можете управлять двумя двигателями постоянного тока одновременно.
DIY Arduino и управляемый через Bluetooth робот-манипулятор Проект:
Очень интересный проект для тех, кто тоже интересуется робототехникой. Вы можете построить свою собственную роботизированную руку, используя данные из этого проекта. Это основано на Arduino, Bluetooth и деталях роботизированной руки, напечатанных на 3D-принтере.Основным ключевым элементом является то, что мы использовали мобильное приложение для Android для управления этой роботизированной рукой.
DIY Arduino Christmas Tree Lights с использованием светодиодов:
Это сезонный проект, мы можем использовать его для любого особого случая. Праздничный проект, в котором мы будем использовать плату Arduino для управления светодиодными лампами, установленными на рождественской елке.
Робот, управляемый жестами рук с использованием Arduino:
Еще один интересный проект – роботизированное транспортное средство, основанное на простых жестах рук.он разработан с использованием Arduino, mpu6050 и пары радиопередатчик-приемник.
Робот, избегающий препятствий, использующий Arduino:
Мы сделали этот проект, используя Arduino. Роботы, избегающие препятствий, могут работать непрерывно, не сталкиваясь с какими-либо препятствиями. Он основан на Arduino. В этом проекте мы использовали ультразвуковой датчик для обнаружения препятствий.
Датчик сердцебиения с использованием Arduino:
В этом проекте разработана система мониторинга сердечного ритма с использованием Arduino, также мы включили датчик для обнаружения сердцебиения.это очень простой и эффективный проект, результат которого можно увидеть на ЖК-дисплее.
Сделай сам светодиодная лампочка (LED Lamp):
Проект несложный, можно сделать самому. мы покажем вам, как сделать свою собственную светодиодную лампу, используя простое оборудование. В его основе лежит бестрансформаторный блок питания.
Металлоискатель роботизированный автомобиль:
Еще один интересный и полезный проект. Закопанные под землей мины создают угрозу для жизни и влияют на экономику страны.Обнаружение и удаление этих мин вручную – опасная задача. Итак, мы используем робота-металлоискателя, работающего по радиочастотной технологии.
Солнечная панель, отслеживающая солнечные лучи:
В этом проекте описывается схема, которая вращает солнечные панели. Солнечная панель слежения за солнцем состоит из двух LDR, солнечной панели, шагового двигателя и микроконтроллера ATMEGA8.
Управление скоростью двигателя постоянного тока с использованием широтно-импульсной модуляции:
Этот метод широтно-импульсной модуляции является более эффективным способом управления скоростью нашего двигателя постоянного тока вручную.
Сигнализация уровня воды с использованием таймера 555:
Это аналогичный проект, который мы уже сделали, но здесь мы используем другую схему таймера модуля 555. Очень простой и недорогой аппаратный проект. Целью этого проекта является разработка системы сигнализации обнаружения уровня воды с использованием простого и недорогого оборудования без ущерба для производительности устройства.
Двунаправленный счетчик посетителей с использованием 8051:
Полезно подсчитывать количество людей, входящих или выходящих из комнаты, и отображать это на экране.В основном используется в кинотеатрах, торговых центрах и т. Д.
Вентилятор постоянного тока с регулируемой температурой с использованием микроконтроллера:
Основной принцип схемы – включение вентилятора, подключенного к двигателю постоянного тока, когда температура превышает пороговое значение. Это можно использовать в домашних приложениях и в ЦП для уменьшения нагрева.
Автоматический выключатель на основе пароля:
Этот проект автоматического выключателя на основе пароля построен с использованием контроллеров 8051 и используется для отключения питания линии путем ввода пароля.
Автоматический контроль яркости уличного освещения:
Это простая схема, которая автоматически регулирует яркость уличного освещения, разработанная с использованием микроконтроллеров и светодиодов.
Робот-следящий за линией контур с использованием микроконтроллера ATMega8:
Этот робот-следящий за линией представляет собой базовый робот, который следует определенному пути, обозначенному линией определенной ширины.
Цифровой тахометр с микроконтроллером 8051:
Здесь мы разработали простой бесконтактный тахометр с микроконтроллером, который может измерять скорость с точностью до 1 об / с.
5-канальная ИК-система дистанционного управления с использованием микроконтроллера:
Цель данной статьи – разработать и продемонстрировать простую 5-канальную систему дистанционного управления для управления пятью нагрузками. Эта схема работает по принципу ИК-связи.
Схема биполярного драйвера светодиода:
Эта схема драйвера биполярного светодиода очень полезна в местах, где требуется мигание света, например, при мигании маяка. Эта схема может использоваться в основном для индикации.
Термометр со шкалой Цельсияс использованием AT89C51:
Эта схема термометра со шкалой Цельсия разработана с использованием at89c51 и lm35.Эта схема работает по принципу аналого-цифрового преобразования. Его можно использовать дома, в мобильных местах, например, в автомобилях, чтобы отслеживать температуру.
Система сигналов трафика на основе плотности с использованием микроконтроллера:
В этой системе мы используем ИК-датчики для измерения плотности трафика. Мы должны установить по одному ИК-датчику для каждой дороги, эти датчики всегда определяют движение на этой конкретной дороге. Все эти датчики подключены к микроконтроллеру. На основе этих датчиков контроллер определяет трафик и управляет системой движения.
Автоматический выключатель освещения в уборной:
Это простая, но очень полезная схема в нашей реальной жизни, которая помогает автоматически включать свет, когда человек входит в туалет, и автоматически выключает свет, когда он выходит из нее.
Автоматический дверной звонок с функцией обнаружения объекта:
Этот автоматический дверной звонок со схемой обнаружения объекта помогает автоматически определять присутствие человека или объекта и звонить в дверной звонок.
Калькулятор логической алгебры:
Этот калькулятор логической алгебры представляет собой интересный проект, который более полезен в реальной жизни, поскольку он работает как портативный калькулятор для упрощения логических выражений на лету.В нашей схеме мы используем методы упрощения логической алгебры, такие как алгоритм Куайна-Маккласки, чтобы упростить логическое выражение и отобразить результат на дисплее.
Автоматический ночник с использованием светодиода высокой мощности:
Этот автоматический ночник представляет собой интересную схему, которая помогает включать светодиодные фонари, связанные с ней, в ночное время и автоматически выключает свет, когда наступает день.
Схема мобильного глушителя:
Эта схема используется для блокировки сигналов сотовых телефонов в радиусе 100 метров.Эта схема может использоваться для передачи ТВ, а также для игрушек или игрушек с дистанционным управлением.
Несмещенные цифровые игральные кости со светодиодами:
Это принципиальная схема цифровых игральных костей, которая почти несмещена. Используя эту схему, нет шанса обмануть, поскольку схема работает с такой высокой скоростью, что она почти незаметна для человеческого глаза.
Схема металлоискателя:
Это простая схема металлоискателя, которая очень полезна для проверки человека в торговых центрах, гостиницах, кинозалах, чтобы убедиться, что человек не имеет при себе взрывоопасных металлов или запрещенных предметов, таких как оружие, бомбы и т. Д. .
Тревога паники:
Эта цепь тревоги паники помогает нам без промедления информировать других о нашей плохой ситуации. Это более полезно, когда злоумышленник входит в наш дом или плохое состояние здоровья, при котором мы не можем общаться с окружающими нас людьми.
Автоматический контроллер железнодорожных ворот с высокоскоростной системой оповещения:
Основная цель этого проекта – обеспечить надлежащую эксплуатацию и управление беспилотными железнодорожными воротами во избежание несчастных случаев на беспилотном железнодорожном переезде.
LED Flasher Схема:
LED Flasher представляет собой простую схему, которая будет мигать светодиодами через регулярный период времени. Эта схема может использоваться в целях украшения или может использоваться для целей сигнализации и многого другого.
Танцующие двухцветные светодиодные фонари Схема:
Обычно в танцующих лампочках используются лампочки небольшого напряжения. Эта схема в основном используется в некоторых случаях, в пабах, в декоративных изделиях или в вывесках с визуальной индикацией и т. Д. Здесь, в этом проекте, мы использовали двухцветные светодиоды для последовательного бегового света.
Интеллектуальный переключатель однозначного ночного освещения:
Это принципиальная схема однозначного переключателя ночного светильника, который автоматически включает домашнее освещение, когда темно, без вмешательства человека. Это также позволяет избежать повторяющихся частых переключений устройств, которые обычно игнорируются в большинстве подобных схем, но могут иметь пагубное влияние на наши рабочие устройства.
Термисторный датчик температуры сигнала тревоги:
Эта схема является датчиком температуры, а также схемой аварийной сигнализации.Схема подает сигнал тревоги всякий раз, когда температура превышает определенный предел.
Система охранной сигнализации Pull Pin:
Эта схема помогает нам получать оповещения, когда кто-то берет наши карманы или сумки. Схема очень полезна для предотвращения кражи наших товаров.
Схема автоматического выключения паяльника:
Эта схема помогает паяльнику автоматически выключаться при обнаружении перегрева и тем самым предотвращает его повреждение.
Цепь сигнализации с дистанционным управлением:
Эта цепь подает сигнал тревоги, когда вы наводите на нее пульт от телевизора и нажимаете любую кнопку.Его можно использовать как звонок для вызова вашего помощника.
Схема зарядного устройства батареи с использованием SCR:
Вот принципиальная схема цепи зарядного устройства батареи, использующей кремниевый управляемый выпрямитель. SCR может использоваться в полуволновом выпрямителе, двухполупериодном выпрямителе, схемах инвертора, схемах управления мощностью и т. Д.
FM Bugger Circuit:
Вот небольшая схема, с помощью которой вы можете слушать разговоры других людей с большого расстояния, используя обычный FM-радиоприемник.Эта схема FM-жукера находится в комнате, где вы хотите послушать разговор. Вы можете послушать этот разговор, используя обычный FM-радиоприемник.
Детектор сотового телефона:
Это простая схема, которая помогает обнаруживать присутствие активированного сотового телефона путем обнаружения сигналов в диапазоне частот от 0,9 до 3 ГГц. Это помогает в отслеживании мобильного телефона, который используется для шпионажа.
Портативный фонарь с питанием от батареи:
Эта схема более полезна при работе с неожиданной и нежелательной темнотой в наших домах или офисах.Он обеспечивает значительную яркость, необходимую для выполнения наших повседневных задач.
ИК-пульт дистанционного управления:
Используя эту схему, мы можем управлять любым бытовым прибором с помощью пульта дистанционного управления. В этом проекте есть две части: одна находится в передающей секции, а другая – в приемной. Приемная секция будет находиться в стабильном положении и подключена к любой нагрузке, а передатчик будет действовать как обычный пульт.
Тестер целостности с мелодией:
Эта схема работает как устройство проверки целостности, которое проверяет целостность текущего провода.Это незаменимый инструмент для проверки обрыва проводов и нежелательного закорачивания проводов.
Цепь сигнализации дождя:
Датчик дождя обнаруживает дождь и подает сигнал тревоги; Детектор дождевой воды используется в полях орошения, домашней автоматизации, связи, автомобилях и т. д. Вот простая и надежная схема детектора дождевой воды, которую можно построить с низкими затратами.
Автоматическая система полива растений:
Эта проектная схема более полезна при автоматическом поливе растений без вмешательства человека.Это более полезно, когда хозяина нет дома несколько дней.
Контур контроллера гейзера горячей воды:
Этот контур предназначен для выключения гейзеров, как только вода становится горячей и готова к купанию. Цепь зарядного устройства свинцово-кислотной батареи
:
Свинцовая батареяявляется перезаряжаемой батареей и более полезна в нашей реальной жизни, поскольку она рассеивает очень мало энергии, имеет очень низкое соотношение энергии к весу, может обеспечивать высокий ток, может работать долгое время с высокой эффективностью и очень низкой стоимостью.
Схема детектора движения:
Детектор движения используется не только в качестве охранной сигнализации, но также во многих приложениях, таких как домашняя автоматизация, система энергоэффективности и т. Д. Детектор движения обнаруживает движение людей или объектов и выдаёт соответствующий выход согласно схеме.
Схема сенсорного включения и выключения:
Эта схема сенсорного ВКЛ / ВЫКЛ более полезна тем, что мы можем автоматически ВКЛЮЧАТЬ или ВЫКЛЮЧАТЬ любой переключатель, прикоснувшись к устройству, не покидая своего места.
Схема зарядного устройства USB для мобильных устройств:
Эта схема полезна для зарядки мобильных устройств через розетки USB, имеющиеся в наших ноутбуках и ПК. Для зарядки вашего мобильного телефона эта схема обеспечивает регулируемое напряжение 4,7 В.
Цепь охранной сигнализации:
Эта цепь поможет вам защитить ваши драгоценные документы, а также ювелира от злоумышленников или кражи. Все, что вам нужно, это просто разместить эту цепь перед шкафчиком или под ковриком, чтобы, когда неизвестный человек подошел и перешагнул через выключатель, цепь сработала и раздастся звуковой сигнал.
Схема репеллента от комаров:
Вот простая схема электронного отпугивателя комаров, которая может производить ультразвук в диапазоне частот 20–38 кГц, который может отпугнуть комаров.
Простая цепь глушителя FM-радио:
Это цепь глушителя, которая используется для блокировки сигналов. Цепь глушителя создает высокочастотный сигнал, который сбивает приемник конкретной системы с приема сигнала, даже если схема работает правильно, пользователь системы чувствует, что схема не работает должным образом.
Схема автоматического управления уличным освещением с использованием реле и LDR:
Эта схема помогает автоматически включать и выключать уличное освещение с помощью реле и LDR. Вся схема построена на микросхеме CA3140.
Схема зарядного устройства аккумулятора:
Эта схема зарядного устройства работает по принципу управления переключением SCR на основе зарядки и разрядки аккумулятора.
Сопряжение ЖК-дисплея 16×2 с 8051:
Это простая принципиальная схема, которая помогает описать сопряжение ЖК-модуля 16×2 с микроконтроллером семейства 8051 AT89C51.
ШИМ-диммер для светодиодов с использованием NE555:
Широтно-импульсная модуляция (ШИМ) играет важную роль в управлении цепями. Мы используем этот ШИМ, чтобы уменьшить интенсивность света светодиода.
Простые цепи пожарной сигнализации:
Вот две простые цепи пожарной сигнализации, которые используются для автоматического обнаружения пожара и немедленного оповещения людей с помощью сигнала тревоги.
Схема беспроводного переключателя с использованием CD4027:
Это простая схема, которая не требует физического контакта с устройством.В этой схеме все, что вам нужно, это провести рукой над LDR, чтобы включить или выключить переключатель.
Электронный почтовый ящик:
Это простая схема, которая помогает обнаружить любую букву, упавшую в наш ящик, путем отключения светодиодных ламп, подключенных к этой цепи.
Схема переключателя хлопка для устройств:
Это еще одна простая, но очень полезная схема, которая помогает включать или выключать устройство, не двигаясь с места, и помогает контролировать скорость электрических устройств, таких как вентилятор и т. Д.
Схема преобразователя 12 В постоянного тока в 220 В переменного тока:
Вот простая схема инвертора, управляемая напряжением, которая преобразует сигнал постоянного тока 12 В в однофазный 220 В переменного тока, используя силовые транзисторы в качестве переключающего устройства.
Схема FM-передатчика:
Здесь мы создали беспроводной FM-передатчик, который использует радиочастотную связь для передачи FM-сигнала средней или малой мощности. Максимальная дальность передачи составляет около 2 км.
Цепь усилителя сабвуфера 100 Вт:
Вот принципиальная схема и работа цепи усилителя сабвуфера 100 Вт.Сабвуфер – это громкоговоритель, который воспроизводит звуковые сигналы низких частот.
Схема системы домашней автоматизации на основе DTMF:
Это простая и очень полезная схема в нашей реальной названной системе бытовой техники, управляемой DTMF. Это помогает управлять бытовой техникой с помощью технологии DTMF.
Уличные фонари, которые загораются при обнаружении движения транспортного средства:
В этой статье описывается схема, которая включает уличные фонари при обнаружении движения транспортного средства и остается выключенной по прошествии определенного времени.Эта система управляет уличным освещением с помощью светозависимого резистора и датчика PIR.
Схема тестирования ИС таймера 555:
Это простая схема тестирования ИС 555, которая проверяет всю ИС таймера 555. Поэтому, прежде чем использовать свою ИС, вы можете проверить, хороша ли ваша ИС, с помощью этой схемы.
Цепь открывателя / доводчика занавеси:
Эта схема открывает и закрывает занавеску в вашем доме и офисе простым нажатием переключателя. Итак, с помощью этой уникальной схемы нам не нужно двигаться с одного места, чтобы открывать и закрывать штору.
Регулируемый источник питания и зарядное устройство:
Это схема, которая помогает проверять или тестировать ваши электронные проекты, а также заряжать батареи мобильного телефона. Эта схема также может работать как аварийный свет.
Светодиодные ходовые огни Схема:
Это простая схема, состоящая из 9 светодиодных фонарей в режиме сканера рыцаря. Это будет привлекательно выглядеть, поскольку светодиод сначала движется в одном направлении, а затем в обратном направлении.
Сигнализация безопасности багажа:
Это простая схема сигнализации, которая помогает включить предупредительный сигнал, когда кто-то пытается украсть багаж.
9-позиционная схема переключателя хлопка:
Эта схема помогает вам управлять бытовой техникой в вашем доме, просто хлопая в ладоши, не вставая с кровати.
Схема преобразователя постоянного тока 12 В в 24 В:
Это еще один вид схемы, которая помогает преобразовывать постоянный ток 12 В в постоянный ток 24 В.
Светодиодный драйвер 230 В:
Здесь мы разработали простую схему, управляющую серией светодиодов от 230 В переменного тока. Это достигается с помощью конденсаторного источника питания. Это недорогая и эффективная схема, которую можно использовать дома.
3X3X3 LED Cube:
Это простая схема светодиодного куба, разработанная без использования микроконтроллера. Он основан на принципе управления светодиодами с помощью тактовых импульсов.
Работа цепи моностабильного мультивибратора:
Вот принципиальная схема и работа моностабильного мультивибратора. Мультивибратор – это электронная схема, которая будет работать как двухкаскадный усилитель, работающий как в стабильном, так и в стабильном режиме.
Сопряжение ЖК-дисплея 16×2 с микроконтроллером PIC:
Это схема, которая помогает сопрягать ЖК-дисплей 16×2 с микроконтроллером PIC18F4550, который принадлежит к семейству PIC18F.
Схема генератора кода Морзе:
Это схема, используемая для генерации кода Морзе. Азбука Морзе – очень старый и универсальный метод отправки текстовых сообщений с использованием беспроводных средств связи.
555 Таймер в режиме моностабильного мультивибратора:
Схема запускается по спадающему фронту, то есть при внезапном переходе от ВЫСОКОГО к НИЗКОМУ. Импульс запуска, создаваемый нажатием кнопки, должен иметь меньшую длительность, чем предполагаемый выходной импульс.
555 Таймер как нестабильный мультивибратор:
В этой схеме есть три резистора с именем R внутри, и все они имеют равные значения.Они образуют делитель напряжения с опорным напряжением 1/3 и 2/3 Vcc (источник питания). Логическое состояние триггера контролируется опорным напряжением, которое подается на один из входов обоих двух компараторов.
Схема светодиодного освещения, работающего от сети:
Это простая схема, которая более полезна для экономии наших ресурсов, энергии и денег путем установки в ваших домах.
Цепь диммера светодиодной лампы:
В этой схеме вначале светодиод светится медленно, затем становится ярче и снова медленно становится тусклым.В основе всей схемы лежит ИС операционного усилителя под названием LM358.
Источник питания переменного напряжения от регулятора фиксированного напряжения:
Эта схема регулятора напряжения используется для получения фиксированного напряжения на выходе вне зависимости от входного напряжения.
Светодиодные рождественские огни Схема:
Это простая схема, используемая для украшения вашего дома путем сборки рождественских огней с использованием светодиодов. Фонари загораются ночью и выключаются утром.
Схема звукового эквалайзера:
Схема используется для изменения мелодии / мелодии на другой уровень высоты тона без потери мелодии.В основном это полезно для меломанов.
Схема детектора воздушного потока:
Эта схема детектора воздушного потока может использоваться для обнаружения потока воздуха в таких областях, как двигатель автомобиля. Его также можно использовать как датчик температуры.
Схема усилителя мощности 150 Вт:
Здесь мы разработали схему усилителя мощности с использованием двухтактной конфигурации класса AB для получения мощности 150 Вт для управления нагрузкой 8 Ом (динамик).
Декодер 7-сегментного светодиодного дисплея:
Это принципиальная схема декодера дисплея, который используется для преобразования двоично-десятичного или двоичного кода в 7-сегментный код, используемый для управления 7-сегментным светодиодным дисплеем.
Цифровой датчик температуры:
Основным принципом этой схемы является отображение цифрового значения температуры. Они в основном используются в экологических приложениях.
Цифровой секундомер Цепь:
Это простая схема, отображающая счет от 0 до 59, представляющий 60-секундный интервал времени. Он состоит из таймера 555 для генерации тактовых импульсов и двух счетных микросхем для выполнения операции счета.
Игрушечный орган с таймером 555 IC:
Это принципиальная схема простого игрушечного пианино с таймером 555 IC.Он производит разные тона или звуки в зависимости от частотного диапазона.
Система посещаемости на основе RFID:
Эта простая система посещаемости на основе RFID разработана с использованием микроконтроллера ATmega8 и в основном используется в учебных заведениях, отраслях и т. Д., Где требуется аутентификация.
Усилитель звука с низким энергопотреблением с таймером 555:
Это простая схема усиления звука с низким энергопотреблением, разработанная с использованием таймеров 555. Его можно использовать для разработки музыкальных систем с низким энергопотреблением, используемых в транспортных средствах.
Сопряжение ЖК-дисплея 16X2 с микроконтроллером AVR:
Это схема, которая помогает сопрягать ЖК-дисплей 16X2 с микроконтроллером AVR. Atmega16 принадлежит к семейству микроконтроллеров AVR.
SR Flip Flop с воротами NAND и NOR:
SR Flip Flop, также известный как SR защелка, является наиболее важным и широко используемым триггером. Получите представление о конструкции SR Flip Flop с NAND и NOR Gates.
JK Flip Flop с использованием CD4027:
CD4027 – это триггер JK, который обычно используется для хранения данных.Получите представление о том, как собрать JK Flip Flop с CD4027.
Тестер полярности и целостности цепи:
С помощью этой схемы мы также можем определить, являются ли компоненты, которые мы используем в нашей схеме, хорошими или плохими, прежде чем устанавливать их на печатную плату.
Таймер реакции Игровая схема:
Это простая и забавная игровая схема, которая содержит 10 светодиодов, которые перемещаются произвольным образом, и мы должны нацеливаться на конкретный светодиод, указанный вашим соперником.
Мультиплексор и демультиплексор:
Мультиплексор – это схема, которая принимает много входов, но дает только один выход, тогда как демультиплексор принимает только один вход и дает много выходов.Получите представление об их принципиальных и контактных схемах в этом посте.
Общие сведения о регуляторе напряжения 7805 IC:
Это принципиальная схема 7805 IC, которая является ИС с регулируемым напряжением 5 В постоянного тока. Он очень гибкий и используется во многих схемах, таких как регулятор напряжения.
Базовые логические вентили с использованием логических вентилей И-НЕ:
Все мы хорошо знаем, что НЕ, И, ИЛИ являются основными логическими вентилями. Здесь мы показали, как спроектировать эти базовые логические вентили, используя один из универсальных вентилей – вентиль И-НЕ.
Построение базовых логических вентилей с использованием вентилей ИЛИ:
Здесь мы показали, как построить базовые логические вентили – вентили НЕ, И, ИЛИ с использованием вентилей ИЛИ, которые являются одними из универсальных вентилей.
Цепь полицейской сирены с использованием таймера NE555:
Эта схема издает звук, похожий на звук полицейской сирены. Вы также можете получить подробную информацию о схеме контактов и внутренней блок-схеме таймера NE555.
Схема усилителя мощности на полевом МОП-транзисторе, 100 Вт:
Схема усилителя мощности, использующая полевой МОП-транзистор, была разработана для получения выходной мощности 100 Вт для управления нагрузкой примерно 8 Ом.
Схема цифрового вольтметра с использованием ICL7107:
Здесь мы разработали аналого-цифровой преобразователь, работающий как цифровой вольтметр, с использованием трех с половиной цифр аналого-цифрового преобразователя ICL7107, имеющего внутренние 7-сегментные декодеры, драйверы дисплея, эталон и часы.
8-канальная схема зуммера викторины с использованием микроконтроллера:
Мы построили схему с использованием микроконтроллера, который сканирует ввод с кнопок и отображает соответствующее число на устройстве отображения.
Двухразрядный счетчик вверх-вниз:
Главный принцип этой схемы – увеличивать значения на семи сегментных дисплеях нажатием кнопки. Эта схема может использоваться в основном в табло.
Цепь сигнала поворота велосипеда:
Целью этой цепи является указание поворота влево или вправо для велосипеда / транспортного средства. Требуются две одинаковые схемы, одна для левой, а другая для правой. Основное сердце этой схемы – таймер 555.
Автоматический переключатель переключения:
Это простая схема автоматического переключения, в которой нагрузка постоянного тока, такая как серия светодиодов, приводится в действие либо батареей, либо источником питания переменного / постоянного тока.
UP / DOWN затухающие светодиодные фонари:
Это простая схема светодиодного освещения с плавным переходом вверх / вниз, которая может использоваться в торговых центрах, домах и в системах безопасности.
Полицейские огни с использованием таймера 555:
Эта схема имитирует огни полицейской машины попеременным миганием. Он трижды мигает красными светодиодами и трижды синими светодиодами. Это мигающее действие выполняется непрерывно с использованием 555 таймеров и декадного счетчика.
Управление скоростью двигателя постоянного тока на основе ШИМ с использованием микроконтроллера:
Вот простая схема управления скоростью двигателя постоянного тока, разработанная с использованием микроконтроллера AVR.Здесь мы используем метод, называемый ШИМ (широтно-импульсная модуляция), для управления скоростью двигателя постоянного тока.
Схема звукового генератора Динг Донг:
Эта схема звукового генератора Динг Донг спроектирована с использованием микросхемы таймера 555 в нестабильном режиме. Его можно использовать как дверной звонок. С некоторыми модификациями его можно использовать для воспроизведения разных звуков. Прочтите этот пост для получения полной информации.
Охранная сигнализация на основе датчика PIR:
В этой статье объясняется система безопасности на основе PIR, в которой датчик PIR используется вместо передатчика или приемника.Это экономит энергопотребление и не требует больших затрат. Эту схему можно использовать в музеях для защиты ценных вещей.
Глушитель пульта ДУ телевизора:
Эта предлагаемая схема подавителя ТВ сбивает инфракрасный приемник в телевизоре, создавая постоянный сигнал, который мешает сигналу дистанционного управления. Если вы включите схему один раз, телевизор не получит никаких команд с пульта дистанционного управления. Это позволяет вам смотреть свою собственную программу, не меняя канал или громкость.
Сверхчувствительная охранная сигнализация:
Эта схема предназначена для предупреждения пользователя, когда злоумышленник входит в дом.Если перед ИК-датчиком есть препятствие, он генерирует сигнал прерывания. Этот сигнал прерывания выдается говорящему, чтобы предупредить пользователя.
Схема дистанционного управления через RF без микроконтроллера:
Здесь мы использовали модули RF434 MHz для создания беспроводного пульта дистанционного управления. С помощью этого пульта дистанционного управления мы можем управлять приборами в пределах 100 метров. Он используется для приложений дистанционного управления, таких как охранная сигнализация, сигнализация двери автомобиля, звонок, системы безопасности и т. Д.
Отключение высокого и низкого напряжения с задержкой и сигнализацией:
Это отключение высокого и низкого напряжения со схемой сигнализации с задержкой усовершенствованная схема автоматического стабилизатора напряжения и используется для защиты нашей бытовой техники.Стоимость его меньше по сравнению со стабилизаторами напряжения.
Схема зарядного устройства для солнечной батареи:
Вот простая схема для зарядки свинцово-кислотной аккумуляторной батареи 6 В, 4,5 Ач от солнечной панели. Это солнечное зарядное устройство имеет регулировку тока и напряжения, а также устройство отключения при перенапряжении. Эта схема также может использоваться для зарядки любой батареи при постоянном напряжении, поскольку выходное напряжение регулируется.
Автомобильное зарядное устройство. Схема:
В этой статье описываются принцип работы, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.
Контроллер уровня воды с использованием микроконтроллера 8051:
В этом проекте мы разрабатываем схему, которая используется для автоматического определения и контроля уровня воды в верхнем резервуаре с использованием микроконтроллеров 8051. Он используется в промышленности для автоматического контроля уровня жидкости.
Пустая цепь аварийной сигнализации:
Основной принцип работы схемы – мигание светодиода каждые 5 секунд. Схема состоит из микросхемы таймера 7555 в качестве основного компонента.
Цепь датчика парковки заднего хода:
Если вы новый водитель, то очень сложно определить расстояние при парковке автомобиля.Схема датчика парковки заднего хода решает эту проблему, показывая расстояние с помощью трех светодиодов. Мы легко можем разместить эту систему на задней части автомобиля.
Схема автоматического светодиодного аварийного освещения:
Это простая и экономичная схема автоматического аварийного освещения со световым датчиком. Эта система заряжается от основного источника питания и активируется при отключении основного питания. Эта аварийная лампа будет работать более 8 часов.
Система электронного кодового замка с одним транзистором:
Главный принцип этой схемы заключается в том, что дверной замок открывается только при последовательном нажатии кнопок.Транзистор и диод играют в схеме основную роль.
Автоматическое зарядное устройство:
Это зарядное устройство автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, схема автоматически заряжает аккумулятор.
Цепь переключателя с активированным освещением:
Основной принцип этой схемы состоит в том, чтобы включить свет, когда горит LDR. Эта схема может использоваться в приложениях безопасности, например, когда на LDR темно, он перестает светиться.
Схема дистанционного шпионского робота:
Это простая схема шпионского робота, которой можно управлять с пульта дистанционного управления. Максимальный управляемый диапазон – 125 метров. Он используется для наблюдения за поведением диких животных в недоступных для людей местах.
Цифровой вольтметр с микроконтроллером 8051:
Это простая схема цифрового вольтметра, разработанная с использованием микроконтроллеров 8051. Эта схема измеряет входное напряжение от 0 В до 5 В. Здесь входное напряжение должно быть постоянным, чтобы получить точный вывод на ЖК-дисплее.
Ультразвуковой дальномер с использованием 8051:
Эта схема объясняет вам, как измерять расстояние с помощью микроконтроллеров 8051. Эта ультразвуковая дальномерная система измеряет расстояние до 2,5 метров с точностью до 1 см.
Шаговый двигатель, взаимодействующий с микроконтроллером 8051:
Основным принципом этой схемы является пошаговое вращение шагового двигателя на определенный угол шага. Микросхема ULN2003 используется для управления шаговым двигателем, поскольку контроллер не может обеспечить ток, необходимый двигателю.
Схема частотомера:
Здесь мы проектируем простую систему частотомера, использующую два таймера и два счетчика. В то время как одна из микросхем таймера используется для генерации тактовых сигналов, другая используется для генерации ограниченного по времени сигнала длительностью в одну секунду.
Задержка с использованием таймеров 8051:
Этот проект о таймерах в микроконтроллерах 8051 и о том, как сгенерировать задержку с помощью таймеров 8051.
Подключение 7-сегментного дисплея к 8051:
В этой статье описывается, как подключить 7-сегментный дисплей к микроконтроллеру AT89C51.Эта система отображает цифры от 0 до 9 непрерывно с заранее заданной задержкой.
LC-метр с таймером 555:
Это простая схема LC-измерителя, разработанная с использованием таймера 555 и микроконтроллеров 8051. Он в основном используется для измерения значения реактивного элемента, такого как конденсатор или катушка индуктивности.
Схема ТВ-передатчика:
Основным принципом этой схемы является передача аудио- и видеосигналов. Здесь аудиосигналы модулируются по частоте, а видеосигналы модулируются по стандарту PAL.Эти модулированные сигналы поступают на антенну.
Двигатель постоянного тока, взаимодействующий с микроконтроллером 8051:
Вот простая, но очень полезная схема в нашем реальном именованном двигателе постоянного тока с микроконтроллером 8051. В нем описывается, как управлять двигателем постоянного тока с помощью контроллера AT89C51.
Схема электрошокера:
Эта схема электрошокера в основном используется в качестве оружия для оглушения или посылки ударных волн на цель с намерением ослабить или парализовать ее.
Транзисторная схема внутренней связи:
Эта транзисторная схема внутренней связи представляет собой простую двустороннюю схему внутренней связи, которая используется как для отправки, так и для приема сигналов.
Взаимодействие светодиодов с 8051:
Основной принцип этой схемы – подключение светодиодов к микроконтроллеру семейства 8051. Обычно используемые светодиоды будут иметь падение напряжения 1,7 В и ток 10 мА, чтобы светиться с полной интенсивностью. Это подается через выходной контакт микроконтроллера.
Цепь воющей сирены:
Главный принцип этой схемы – создание воющей сирены. Микросхема таймера 555 работает в стабильном режиме. Когда переключатель нажат, громкоговоритель издает сирену высокого тона, а когда он отпускается, его высота уменьшается и отключается через 30 секунд.
Схема управления звуковым сигналом:
В этой статье объясняется, как разработать схему управления звуковым сигналом с коэффициентом усиления около 25. Эта конструкция требует меньшего количества компонентов и является экономичной.
Схема удаленного кодировщика / декодера FM:
Это простая статья, в которой показано, как разработать схему удаленного кодировщика и декодера FM с использованием микросхем RF600E и RF600D. Эта пара микросхем кодера и декодера устанавливает связь с высоким уровнем безопасности. Рабочее напряжение этих микросхем от 2В до 6В.6 В постоянного тока.
Беспроводное зарядное устройство для мобильных аккумуляторов Схема:
Эта схема в основном работает по принципу взаимной индуктивности. Эта схема может использоваться как схема беспроводной передачи энергии, схема беспроводного мобильного зарядного устройства, схема беспроводного зарядного устройства аккумулятора и т. Д.
Индикатор уровня заряда батареи:
В этой статье объясняется, как разработать индикатор уровня заряда батареи. Вы можете использовать эту схему для проверки автомобильного аккумулятора или инвертора. Таким образом, используя эту схему, мы можем увеличить срок службы батареи.
Схема FM-радио:
Схема FM-радио – это простая схема, которую можно настроить на нужную частоту локально. В этой статье описывается схема схемы FM-радио. Это карманная радиосхема.
Схема светодиодной лампы с использованием порта USB:
Это простая схема светодиодной лампы USB, обеспечивающая выходное напряжение 5 В. Может использоваться как аварийный свет, а также как лампа для чтения.
Взаимодействие GPS с микроконтроллером 8051:
В этом интерфейсе GPS со схемами 8051 модуль GPS вычисляет положение, считывая сигналы, которые передаются со спутников.
Как связать часы реального времени с PIC18F:
Получите представление о RTC, схеме выводов микроконтроллера PIC и о том, как взаимодействовать RTC с PIC18F. RTC – это интегральная схема, отслеживающая текущее время.
Генератор случайных чисел с использованием 8051:
Эта схема помогает генерировать случайное число от 0 до 100 при нажатии кнопки и может использоваться в таких играх, как монополия, змейка.
Схема активного аудиокроссовера:
Аудиокроссовер – это электронный фильтр, используемый в аудиоприложениях для отправки соответствующего сигнала на динамики или драйверы.Эта схема используется в аудиосистемах HiFi для отделения частотных полос от аудиосигнала.
Схема ИК-аудиосвязи:
Эта простая ИК-схема звуковой связи используется для беспроводной передачи аудиосигналов. Этот ИК-аудиоканал может передавать аудиосигналы на расстояние до 4 метров.
Бытовая техника, управляемая мобильным телефоном:
Эта система домашней автоматизации с мобильным управлением разработана без использования микроконтроллера. Мы также можем управлять роботом с помощью этой технологии, внося некоторые изменения.
Источник питания переменного напряжения:
Это помогает спроектировать схему источника переменного тока, которая будет обеспечивать от 0 до 28 В при токе от 6 до 8 ампер. Его можно использовать в различных усилителях мощности и генераторах для обеспечения питания постоянным током.
Цифровые часы с использованием 8051:
Эта схема отображает время на ЖК-дисплее. Для этих часов мы можем установить время в любой момент. Здесь часы работают в 24-часовом режиме, а микросхема RTC настраивается программированием контроллеров 8051.
Взаимодействие GSM с 8051:
Основной принцип этой схемы заключается в взаимодействии модема GSM с микроконтроллером.Используемый микроконтроллер – микроконтроллер AT89C51.
Схема многоканального аудиомикшера:
Эта схема микширования аудиосигналов имеет 2 входа микрофона и 2 линейных входа. Если вы хотите увеличить количество входных каналов в соответствии с приложением, добавьте ту же схему параллельно с существующей схемой.
Светодиодный индикатор от затяжки до выключения Цепь:
Основной принцип работы схемы – выключить светодиод с помощью затяжки. Затяжка, приложенная к микрофону, преобразуется в очень маленькое напряжение.Это напряжение усиливается и подается на схему, чтобы светодиод погас.
Биометрическая система посещаемости:
Основная цель этой схемы – регистрировать посещаемость биометрическим методом и отображать ее по запросу. Его можно использовать в образовательных учреждениях, на производстве и т. Д.
Цепь аварийной сигнализации с активацией светом:
Главный принцип этой схемы – производить звук в зависимости от интенсивности света, падающего на цепь. По мере того, как интенсивность света, падающего на контур, увеличивается, он производит импульсы большей продолжительности и, таким образом, производит больше звука.Основная часть схемы – это микросхема таймера 555.
Электронная система безопасности с управлением глазами:
Это простая схема системы безопасности с электронным управлением глазами, разработанная с использованием регулятора напряжения 7805 и LDR. Он используется в приложениях безопасности.
Схема звуковой карты USB:
Эта схема звуковой карты USB представляет собой устройство, которое позволяет встроенной системе создавать и записывать настоящий и высококачественный звук. Прочтите этот пост для получения более подробной информации.
Цепь измерителя VU с 10 светодиодами:
Измерители VUиспользуются во многих приложениях, таких как дискотеки, для измерения уровня аудиосигналов.Вот принципиальная схема и работа LED VU Meter.
Hi-Fi Dx Bass Circuit:
Эта Hi-Fi Dx Bass Circuit описывает конструкцию, принцип и работу двухступенчатой схемы усиления низких частот с использованием простых фильтров высоких и низких частот.
Беспроводная электронная доска объявлений с использованием GSM:
Эта беспроводная электронная доска объявлений с использованием технологии GSM и схемы микроконтроллера используется для отображения данных на ЖК-дисплее, которые мы отправляем с мобильного телефона.
Система дверного замка на основе пароля с использованием микроконтроллера 8051:
Эта система демонстрирует систему дверного замка на основе пароля, в которой после ввода правильного кода или пароля дверь открывается, и заинтересованному лицу разрешается доступ в охраняемую зону.Через некоторое время дверь закроется автоматически. Он полностью функционален на основе пароля.
Роботизированное транспортное средство, управляемое сотовым телефоном:
Роботизированное транспортное средство, управляемое мобильным телефоном, основано на контроллере DTMF. Это без использования микроконтроллера. Функционировать объект будет через мобильный телефон. Его можно использовать в промышленности и системах видеонаблюдения.
Робот обнаружения человека с использованием микроконтроллера 8051:
Главный принцип схемы – обнаружение человека с помощью датчика обнаружения человека.Беспроводной робот управляется вручную с помощью ПК. Используемая здесь беспроводная технология – это радиочастотная технология. Данные передаются на приемник через RF.
Робот, управляемый SMS:
Робот, управляемый GSM, или робот, управляемый SMS, – это беспроводной робот, который выполняет необходимые действия, получая набор инструкций в форме службы коротких сообщений (SMS).
Удаленная электронная бытовая техника, управляемая паролем:
Как управлять электроприборами с помощью устройства Android.Здесь модуль Bluetooth сопряжен с микроконтроллером 8051. Этот Bluetooth получает команды от приложения Android по беспроводной связи.
Автоматическое освещение помещений с использованием Arduino и датчика PIR:
Это очень простой проект освещения для автоматического освещения помещений, в котором датчик Arduino и PIR автоматически включает и выключает освещение в помещении.
Система автоматического открывания дверей с использованием датчика PIR и Arduino:
В этом проекте реализована система автоматического открывания дверей на основе датчиков Arduino и PIR, после чего, обнаруживая любое движение человека, дверь открывается автоматически.Чаще всего мы видим такую функциональность в торговых центрах.
DIY RGB LED Matrix:
Это простой проект светодиодной матрицы, управляемый через приложение для Android. Этот проект может быть полезен при изготовлении вывесок, прокручиваемых досках сообщений и т. Д.
Arduino 8 × 8 LED Matrix Interface:
Этот проект аналогичен вышеупомянутому проекту, но использует Arduino с большим количеством светодиодов. В нем показано, как подключить светодиодную матрицу 8 × 8 к Arduino. Для этого проекта существует специальное приложение для Android, с помощью которого вы можете установить светодиодную матрицу 8 × 8 и управлять ею с телефона.
Arduino Управление двигателем постоянного тока с использованием L298N:
Используя этот проект, вы можете управлять простым двигателем постоянного тока с помощью очень популярного модуля драйвера двигателя L298N и Arduino. Вы можете управлять двумя двигателями постоянного тока одновременно.
Сделай сам Arduino и управляемый через Bluetooth робот-манипулятор:
Очень интересный проект для тех, кто тоже интересуется робототехникой. Вы можете построить свою собственную роботизированную руку, используя данные из этого проекта. Это основано на Arduino, Bluetooth и деталях роботизированной руки, напечатанных на 3D-принтере.Основным ключевым элементом является то, что мы использовали мобильное приложение для Android для управления этой роботизированной рукой.
DIY Arduino Christmas Tree Lights с использованием светодиодов:
Это сезонный проект, мы можем использовать его для любого особого случая. Праздничный проект, в котором мы будем использовать плату Arduino для управления светодиодными лампами, установленными на рождественской елке.
Робот, управляемый жестами рук с использованием Arduino:
Еще один интересный проект – роботизированное транспортное средство, основанное на простых жестах рук.он разработан с использованием Arduino, mpu6050 и пары радиопередатчик-приемник.
Робот, избегающий препятствий, использующий Arduino:
Мы сделали этот проект, используя Arduino. Роботы, избегающие препятствий, могут работать непрерывно, не сталкиваясь с какими-либо препятствиями. Он основан на Arduino. В этом проекте мы использовали ультразвуковой датчик для обнаружения препятствий.
Датчик сердцебиения с использованием Arduino:
В этом проекте разработана система мониторинга сердечного ритма с использованием Arduino, также мы включили датчик для обнаружения сердцебиения.это очень простой и эффективный проект, результат которого можно увидеть на ЖК-дисплее.
Сделай сам светодиодная лампочка (LED Lamp):
Проект несложный, можно сделать самому. мы покажем вам, как сделать свою собственную светодиодную лампу, используя простое оборудование. В его основе лежит бестрансформаторный блок питания.
Металлоискатель роботизированный автомобиль:
Еще один интересный и полезный проект. Закопанные под землей мины создают угрозу для жизни и влияют на экономику страны.Обнаружение и удаление этих мин вручную – опасная задача. Итак, мы используем робота-металлоискателя, работающего по радиочастотной технологии.
Солнечная панель, отслеживающая солнечные лучи:
В этом проекте описывается схема, которая вращает солнечные панели. Солнечная панель слежения за солнцем состоит из двух LDR, солнечной панели, шагового двигателя и микроконтроллера ATMEGA8.
Управление скоростью двигателя постоянного тока с использованием широтно-импульсной модуляции:
Этот метод широтно-импульсной модуляции является более эффективным способом управления скоростью нашего двигателя постоянного тока вручную.
Сигнализация уровня воды с использованием таймера 555:
Это аналогичный проект, который мы уже сделали, но здесь мы используем другую схему таймера модуля 555. Очень простой и недорогой аппаратный проект. Целью этого проекта является разработка системы сигнализации обнаружения уровня воды с использованием простого и недорогого оборудования без ущерба для производительности устройства.
Двунаправленный счетчик посетителей с использованием 8051:
Полезно подсчитывать количество людей, входящих или выходящих из комнаты, и отображать это на экране.В основном используется в кинотеатрах, торговых центрах и т. Д.
Вентилятор постоянного тока с регулируемой температурой с использованием микроконтроллера:
Основной принцип схемы – включение вентилятора, подключенного к двигателю постоянного тока, когда температура превышает пороговое значение. Это можно использовать в домашних приложениях и в ЦП для уменьшения нагрева.
Автоматический выключатель на основе пароля:
Этот проект автоматического выключателя на основе пароля построен с использованием контроллеров 8051 и используется для отключения питания линии путем ввода пароля.
Автоматический контроль яркости уличного освещения:
Это простая схема, которая автоматически регулирует яркость уличного освещения, разработанная с использованием микроконтроллеров и светодиодов.
Робот-следящий за линией контур с использованием микроконтроллера ATMega8:
Этот робот-следящий за линией представляет собой базовый робот, который следует определенному пути, обозначенному линией определенной ширины.
Цифровой тахометр с микроконтроллером 8051:
Здесь мы разработали простой бесконтактный тахометр с микроконтроллером, который может измерять скорость с точностью до 1 об / с.
5-канальная ИК-система дистанционного управления с использованием микроконтроллера:
Цель данной статьи – разработать и продемонстрировать простую 5-канальную систему дистанционного управления для управления пятью нагрузками. Эта схема работает по принципу ИК-связи.
Схема биполярного драйвера светодиода:
Эта схема драйвера биполярного светодиода очень полезна в местах, где требуется мигание света, например, при мигании маяка. Эта схема может использоваться в основном для индикации.
Термометр со шкалой Цельсияс использованием AT89C51:
Эта схема термометра со шкалой Цельсия разработана с использованием at89c51 и lm35.Эта схема работает по принципу аналого-цифрового преобразования. Его можно использовать дома, в мобильных местах, например, в автомобилях, чтобы отслеживать температуру.
Система сигналов трафика на основе плотности с использованием микроконтроллера:
В этой системе мы используем ИК-датчики для измерения плотности трафика. Мы должны установить по одному ИК-датчику для каждой дороги, эти датчики всегда определяют движение на этой конкретной дороге. Все эти датчики подключены к микроконтроллеру. На основе этих датчиков контроллер определяет трафик и управляет системой движения.
Автоматический выключатель освещения в уборной:
Это простая, но очень полезная схема в нашей реальной жизни, которая помогает автоматически включать свет, когда человек входит в туалет, и автоматически выключает свет, когда он выходит из нее.
Автоматический дверной звонок с функцией обнаружения объекта:
Этот автоматический дверной звонок со схемой обнаружения объекта помогает автоматически определять присутствие человека или объекта и звонить в дверной звонок.
Калькулятор логической алгебры:
Этот калькулятор логической алгебры представляет собой интересный проект, который более полезен в реальной жизни, поскольку он работает как портативный калькулятор для упрощения логических выражений на лету.В нашей схеме мы используем методы упрощения логической алгебры, такие как алгоритм Куайна-Маккласки, чтобы упростить логическое выражение и отобразить результат на дисплее.
Автоматический ночник с использованием светодиода высокой мощности:
Этот автоматический ночник представляет собой интересную схему, которая помогает включать светодиодные фонари, связанные с ней, в ночное время и автоматически выключает свет, когда наступает день.
Схема мобильного глушителя:
Эта схема используется для блокировки сигналов сотовых телефонов в радиусе 100 метров.Эта схема может использоваться для передачи ТВ, а также для игрушек или игрушек с дистанционным управлением.
Несмещенные цифровые игральные кости со светодиодами:
Это принципиальная схема цифровых игральных костей, которая почти несмещена. Используя эту схему, нет шанса обмануть, поскольку схема работает с такой высокой скоростью, что она почти незаметна для человеческого глаза.
Схема металлоискателя:
Это простая схема металлоискателя, которая очень полезна для проверки человека в торговых центрах, гостиницах, кинозалах, чтобы убедиться, что человек не имеет при себе взрывоопасных металлов или запрещенных предметов, таких как оружие, бомбы и т. Д. .
Тревога паники:
Эта цепь тревоги паники помогает нам без промедления информировать других о нашей плохой ситуации. Это более полезно, когда злоумышленник входит в наш дом или плохое состояние здоровья, при котором мы не можем общаться с окружающими нас людьми.
Автоматический контроллер железнодорожных ворот с высокоскоростной системой оповещения:
Основная цель этого проекта – обеспечить надлежащую эксплуатацию и управление беспилотными железнодорожными воротами во избежание несчастных случаев на беспилотном железнодорожном переезде.
LED Flasher Схема:
LED Flasher представляет собой простую схему, которая будет мигать светодиодами через регулярный период времени. Эта схема может использоваться в целях украшения или может использоваться для целей сигнализации и многого другого.
Танцующие двухцветные светодиодные фонари Схема:
Обычно в танцующих лампочках используются лампочки небольшого напряжения. Эта схема в основном используется в некоторых случаях, в пабах, в декоративных изделиях или в вывесках с визуальной индикацией и т. Д. Здесь, в этом проекте, мы использовали двухцветные светодиоды для последовательного бегового света.
Интеллектуальный переключатель однозначного ночного освещения:
Это принципиальная схема однозначного переключателя ночного светильника, который автоматически включает домашнее освещение, когда темно, без вмешательства человека. Это также позволяет избежать повторяющихся частых переключений устройств, которые обычно игнорируются в большинстве подобных схем, но могут иметь пагубное влияние на наши рабочие устройства.
Термисторный датчик температуры сигнала тревоги:
Эта схема является датчиком температуры, а также схемой аварийной сигнализации.Схема подает сигнал тревоги всякий раз, когда температура превышает определенный предел.
Система охранной сигнализации Pull Pin:
Эта схема помогает нам получать оповещения, когда кто-то берет наши карманы или сумки. Схема очень полезна для предотвращения кражи наших товаров.
Схема автоматического выключения паяльника:
Эта схема помогает паяльнику автоматически выключаться при обнаружении перегрева и тем самым предотвращает его повреждение.
Цепь сигнализации с дистанционным управлением:
Эта цепь подает сигнал тревоги, когда вы наводите на нее пульт от телевизора и нажимаете любую кнопку.Его можно использовать как звонок для вызова вашего помощника.
Схема зарядного устройства батареи с использованием SCR:
Вот принципиальная схема цепи зарядного устройства батареи, использующей кремниевый управляемый выпрямитель. SCR может использоваться в полуволновом выпрямителе, двухполупериодном выпрямителе, схемах инвертора, схемах управления мощностью и т. Д.
FM Bugger Circuit:
Вот небольшая схема, с помощью которой вы можете слушать разговоры других людей с большого расстояния, используя обычный FM-радиоприемник.Эта схема FM-жукера находится в комнате, где вы хотите послушать разговор. Вы можете послушать этот разговор, используя обычный FM-радиоприемник.
Детектор сотового телефона:
Это простая схема, которая помогает обнаруживать присутствие активированного сотового телефона путем обнаружения сигналов в диапазоне частот от 0,9 до 3 ГГц. Это помогает в отслеживании мобильного телефона, который используется для шпионажа.
Портативный фонарь с питанием от батареи:
Эта схема более полезна при работе с неожиданной и нежелательной темнотой в наших домах или офисах.Он обеспечивает значительную яркость, необходимую для выполнения наших повседневных задач.
ИК-пульт дистанционного управления:
Используя эту схему, мы можем управлять любым бытовым прибором с помощью пульта дистанционного управления. В этом проекте есть две части: одна находится в передающей секции, а другая – в приемной. Приемная секция будет находиться в стабильном положении и подключена к любой нагрузке, а передатчик будет действовать как обычный пульт.
Тестер целостности с мелодией:
Эта схема работает как устройство проверки целостности, которое проверяет целостность текущего провода.Это незаменимый инструмент для проверки обрыва проводов и нежелательного закорачивания проводов.
Цепь сигнализации дождя:
Датчик дождя обнаруживает дождь и подает сигнал тревоги; Детектор дождевой воды используется в полях орошения, домашней автоматизации, связи, автомобилях и т. д. Вот простая и надежная схема детектора дождевой воды, которую можно построить с низкими затратами.
Автоматическая система полива растений:
Эта проектная схема более полезна при автоматическом поливе растений без вмешательства человека.Это более полезно, когда хозяина нет дома несколько дней.
Контур контроллера гейзера горячей воды:
Этот контур предназначен для выключения гейзеров, как только вода становится горячей и готова к купанию. Цепь зарядного устройства свинцово-кислотной батареи
:
Свинцовая батареяявляется перезаряжаемой батареей и более полезна в нашей реальной жизни, поскольку она рассеивает очень мало энергии, имеет очень низкое соотношение энергии к весу, может обеспечивать высокий ток, может работать долгое время с высокой эффективностью и очень низкой стоимостью.
Схема детектора движения:
Детектор движения используется не только в качестве охранной сигнализации, но также во многих приложениях, таких как домашняя автоматизация, система энергоэффективности и т. Д. Детектор движения обнаруживает движение людей или объектов и выдаёт соответствующий выход согласно схеме.
Схема сенсорного включения и выключения:
Эта схема сенсорного ВКЛ / ВЫКЛ более полезна тем, что мы можем автоматически ВКЛЮЧАТЬ или ВЫКЛЮЧАТЬ любой переключатель, прикоснувшись к устройству, не покидая своего места.
Схема зарядного устройства USB для мобильных устройств:
Эта схема полезна для зарядки мобильных устройств через розетки USB, имеющиеся в наших ноутбуках и ПК. Для зарядки вашего мобильного телефона эта схема обеспечивает регулируемое напряжение 4,7 В.
Цепь охранной сигнализации:
Эта цепь поможет вам защитить ваши драгоценные документы, а также ювелира от злоумышленников или кражи. Все, что вам нужно, это просто разместить эту цепь перед шкафчиком или под ковриком, чтобы, когда какой-либо неизвестный человек подошел и перешел через выключатель, цепь сработала и раздастся звуковой сигнал.
Схема репеллента от комаров:
Вот простая схема электронного отпугивателя комаров, которая может производить ультразвук в диапазоне частот 20–38 кГц, который может отпугнуть комаров.
Простая цепь глушителя FM-радио:
Это цепь глушителя, которая используется для блокировки сигналов. Цепь глушителя генерирует высокочастотный сигнал, который сбивает приемник конкретной системы с приема сигнала, даже если цепь работает правильно, пользователь системы чувствует, что цепь не работает должным образом.
Схема автоматического управления уличным освещением с использованием реле и LDR:
Эта схема помогает автоматически включать и выключать уличное освещение с помощью реле и LDR. Вся схема построена на микросхеме CA3140.
Схема зарядного устройства аккумулятора:
Эта схема зарядного устройства работает по принципу управления переключением SCR на основе зарядки и разрядки аккумулятора.
Сопряжение ЖК-дисплея 16×2 с 8051:
Это простая принципиальная схема, которая помогает описать сопряжение ЖК-модуля 16×2 с микроконтроллером семейства 8051 AT89C51.
ШИМ-диммер для светодиодов с использованием NE555:
Широтно-импульсная модуляция (ШИМ) играет важную роль в управлении цепями. Мы используем этот ШИМ, чтобы уменьшить интенсивность света светодиода.
Простые цепи пожарной сигнализации:
Вот две простые цепи пожарной сигнализации, которые используются для автоматического обнаружения пожара и немедленного оповещения людей с помощью сигнала тревоги.
Схема беспроводного переключателя с использованием CD4027:
Это простая схема, которая не требует физического контакта с устройством.В этой схеме все, что вам нужно, это провести рукой над LDR, чтобы включить или выключить переключатель.
Электронный почтовый ящик:
Это простая схема, которая помогает обнаружить любую букву, упавшую в наш ящик, путем отключения светодиодных ламп, подключенных к этой цепи.
Схема переключателя хлопка для устройств:
Это еще одна простая, но очень полезная схема, которая помогает включать или выключать устройство, не двигаясь с места, и помогает контролировать скорость электрических устройств, таких как вентилятор и т. Д.
Схема преобразователя 12 В постоянного тока в 220 В переменного тока:
Вот простая схема инвертора, управляемая напряжением, которая преобразует сигнал постоянного тока 12 В в однофазный 220 В переменного тока, используя силовые транзисторы в качестве переключающего устройства.
Схема FM-передатчика:
Здесь мы создали беспроводной FM-передатчик, который использует радиочастотную связь для передачи FM-сигнала средней или малой мощности. Максимальная дальность передачи составляет около 2 км.
Цепь усилителя сабвуфера 100 Вт:
Вот принципиальная схема и работа цепи усилителя сабвуфера 100 Вт.Сабвуфер – это громкоговоритель, который воспроизводит звуковые сигналы низких частот.
Схема системы домашней автоматизации на основе DTMF:
Это простая и очень полезная схема в нашей реальной названной системе бытовой техники, управляемой DTMF. Это помогает управлять бытовой техникой с помощью технологии DTMF.
Уличные фонари, которые загораются при обнаружении движения транспортного средства:
В этой статье описывается схема, которая включает уличные фонари при обнаружении движения транспортного средства и остается выключенной по прошествии определенного времени.Эта система управляет уличным освещением с помощью светозависимого резистора и датчика PIR.
Схема тестирования ИС таймера 555:
Это простая схема тестирования ИС 555, которая проверяет всю ИС таймера 555. Поэтому, прежде чем использовать свою ИС, вы можете проверить, хороша ли ваша ИС, с помощью этой схемы.
Цепь открывателя / доводчика занавеси:
Эта схема открывает и закрывает занавеску в вашем доме и офисе простым нажатием переключателя. Итак, с помощью этой уникальной схемы нам не нужно двигаться с одного места, чтобы открывать и закрывать штору.
Регулируемый источник питания и зарядное устройство:
Это схема, которая помогает проверять или тестировать ваши электронные проекты, а также заряжать батареи мобильного телефона. Эта схема также может работать как аварийный свет.
Светодиодные ходовые огни Схема:
Это простая схема, состоящая из 9 светодиодных фонарей в режиме сканера рыцаря. Это будет привлекательно выглядеть, поскольку светодиод сначала движется в одном направлении, а затем в обратном направлении.
Сигнализация безопасности багажа:
Это простая схема сигнализации, которая помогает включить предупредительный сигнал, когда кто-то пытается украсть багаж.
9-позиционная схема переключателя хлопка:
Эта схема помогает вам управлять бытовой техникой в вашем доме, просто хлопая в ладоши, не вставая с кровати.
Схема преобразователя постоянного тока 12 В в 24 В:
Это еще один вид схемы, которая помогает преобразовывать постоянный ток 12 В в постоянный ток 24 В.
Светодиодный драйвер 230 В:
Здесь мы разработали простую схему, управляющую серией светодиодов от 230 В переменного тока. Это достигается с помощью конденсаторного источника питания. Это недорогая и эффективная схема, которую можно использовать дома.
3X3X3 LED Cube:
Это простая схема светодиодного куба, разработанная без использования микроконтроллера. Он основан на принципе управления светодиодами с помощью тактовых импульсов.
Работа цепи моностабильного мультивибратора:
Вот принципиальная схема и работа моностабильного мультивибратора. Мультивибратор – это электронная схема, которая будет работать как двухкаскадный усилитель, работающий как в стабильном, так и в нестабильном режиме.
Сопряжение ЖК-дисплея 16×2 с микроконтроллером PIC:
Это схема, которая помогает сопрягать ЖК-дисплей 16×2 с микроконтроллером PIC18F4550, который принадлежит к семейству PIC18F.
Схема генератора кода Морзе:
Это схема, используемая для генерации кода Морзе. Азбука Морзе – очень старый и универсальный метод отправки текстовых сообщений с использованием беспроводных средств связи.
555 Таймер в режиме моностабильного мультивибратора:
Схема запускается по спадающему фронту, то есть при внезапном переходе от ВЫСОКОГО к НИЗКОМУ. Импульс запуска, создаваемый нажатием кнопки, должен иметь меньшую длительность, чем предполагаемый выходной импульс.
555 Таймер как нестабильный мультивибратор:
В этой схеме есть три резистора с именем R внутри, и все они имеют равные значения.Они образуют делитель напряжения с опорным напряжением 1/3 и 2/3 Vcc (источник питания). Логическое состояние триггера контролируется опорным напряжением, которое подается на один из входов обоих двух компараторов.
Схема светодиодного освещения, работающего от сети:
Это простая схема, которая более полезна для экономии наших ресурсов, энергии и денег путем установки в ваших домах.
Цепь диммера светодиодной лампы:
В этой схеме вначале светодиод светится медленно, затем становится ярче и снова медленно становится тусклым.В основе всей схемы лежит ИС операционного усилителя под названием LM358.
Источник питания переменного напряжения от регулятора фиксированного напряжения:
Эта схема регулятора напряжения используется для получения фиксированного напряжения на выходе вне зависимости от входного напряжения.
Светодиодные рождественские огни Схема:
Это простая схема, используемая для украшения вашего дома путем сборки рождественских огней с использованием светодиодов. Фонари загораются ночью и выключаются утром.
Схема звукового эквалайзера:
Схема используется для изменения мелодии / мелодии на другой уровень высоты тона без потери мелодии.В основном это полезно для меломанов.
Схема датчика воздушного потока:
Эта схема датчика воздушного потока может использоваться для обнаружения потока воздуха в таких областях, как двигатель автомобиля. Его также можно использовать как датчик температуры.
Схема усилителя мощности 150 Вт:
Здесь мы разработали схему усилителя мощности с использованием двухтактной конфигурации класса AB для получения мощности 150 Вт для управления нагрузкой 8 Ом (динамик).
Декодер 7-сегментного светодиодного дисплея:
Это принципиальная схема декодера дисплея, который используется для преобразования двоично-десятичного или двоичного кода в 7-сегментный код, используемый для управления 7-сегментным светодиодным дисплеем.
Цифровой датчик температуры:
Основным принципом этой схемы является отображение цифрового значения температуры. Они в основном используются в экологических приложениях.
Цифровой секундомер Цепь:
Это простая схема, отображающая счет от 0 до 59, представляющий 60-секундный интервал времени. Он состоит из таймера 555 для генерации тактовых импульсов и двух счетных микросхем для выполнения операции счета.
Игрушечный орган с таймером 555 IC:
Это принципиальная схема простого игрушечного пианино с таймером 555 IC.Он производит разные тона или звуки в зависимости от частотного диапазона.
Система посещаемости на основе RFID:
Эта простая система посещаемости на основе RFID разработана с использованием микроконтроллера ATmega8 и в основном используется в учебных заведениях, отраслях и т. Д., Где требуется аутентификация.
Усилитель звука с низким энергопотреблением с таймером 555:
Это простая схема усиления звука с низким энергопотреблением, разработанная с использованием таймеров 555. Его можно использовать для разработки музыкальных систем с низким энергопотреблением, используемых в транспортных средствах.
Сопряжение ЖК-дисплея 16X2 с микроконтроллером AVR:
Это схема, которая помогает сопрягать ЖК-дисплей 16X2 с микроконтроллером AVR. Atmega16 принадлежит к семейству микроконтроллеров AVR.
SR Flip Flop с воротами NAND и NOR:
SR Flip Flop, также известный как SR защелка, является наиболее важным и широко используемым триггером. Получите представление о конструкции SR Flip Flop с NAND и NOR Gates.
JK Flip Flop с использованием CD4027:
CD4027 – это триггер JK, который обычно используется для хранения данных.Получите представление о том, как собрать JK Flip Flop с CD4027.
Тестер полярности и целостности цепи:
С помощью этой схемы мы также можем определить, являются ли компоненты, которые мы используем в нашей схеме, хорошими или плохими, прежде чем устанавливать их на печатную плату.
Таймер реакции Игровая схема:
Это простая и забавная игровая схема, которая содержит 10 светодиодов, которые перемещаются произвольным образом, и мы должны нацеливаться на конкретный светодиод, указанный вашим соперником.
Мультиплексор и демультиплексор:
Мультиплексор – это схема, которая принимает много входов, но дает только один выход, тогда как демультиплексор принимает только один вход и дает много выходов.Получите представление об их принципиальных и контактных схемах в этом посте.
Общие сведения о регуляторе напряжения 7805 IC:
Это принципиальная схема 7805 IC, которая является ИС с регулируемым напряжением 5 В постоянного тока. Он очень гибкий и используется во многих схемах, таких как регулятор напряжения.
Базовые логические вентили с использованием логических вентилей И-НЕ:
Все мы хорошо знаем, что НЕ, И, ИЛИ являются основными логическими вентилями. Здесь мы показали, как спроектировать эти базовые логические вентили, используя один из универсальных вентилей – вентиль И-НЕ.
Построение базовых логических вентилей с использованием вентилей ИЛИ:
Здесь мы показали, как построить базовые логические вентили – вентили НЕ, И, ИЛИ с использованием вентилей ИЛИ, которые являются одними из универсальных вентилей.
Цепь полицейской сирены с использованием таймера NE555:
Эта схема издает звук, похожий на звук полицейской сирены. Вы также можете получить подробную информацию о схеме контактов и внутренней блок-схеме таймера NE555.
Схема усилителя мощности на полевом МОП-транзисторе, 100 Вт:
Схема усилителя мощности, использующая полевой МОП-транзистор, была разработана для получения выходной мощности 100 Вт для управления нагрузкой примерно 8 Ом.
Схема цифрового вольтметра с использованием ICL7107:
Здесь мы разработали аналого-цифровой преобразователь, работающий как цифровой вольтметр, с использованием трех с половиной цифр аналого-цифрового преобразователя ICL7107, имеющего внутренние 7-сегментные декодеры, драйверы дисплея, эталонный и Часы.
8-канальная схема зуммера викторины с использованием микроконтроллера:
Мы построили схему с использованием микроконтроллера, который сканирует ввод с кнопок и отображает соответствующее число на устройстве отображения.
Двухразрядный счетчик вверх-вниз:
Главный принцип этой схемы – увеличивать значения на семи сегментных дисплеях нажатием кнопки. Эта схема может использоваться в основном в табло.
Цепь сигнала поворота велосипеда:
Целью этой цепи является указание поворота влево или вправо для велосипеда / транспортного средства. Требуются две одинаковые схемы, одна – для левой, а другая – для правой. Основное сердце этой схемы – таймер 555.
Автоматический переключатель переключения:
Это простая схема автоматического переключения, в которой нагрузка постоянного тока, такая как серия светодиодов, приводится в действие либо батареей, либо источником питания переменного / постоянного тока.
UP / DOWN затухающие светодиодные фонари:
Это простая схема светодиодного освещения с плавным переходом вверх / вниз, которая может использоваться в торговых центрах, домах и в системах безопасности.
Полицейские огни с использованием таймера 555:
Эта схема имитирует огни полицейской машины попеременным миганием. Он трижды мигает красными светодиодами и трижды синими светодиодами. Это мигающее действие выполняется непрерывно с использованием 555 таймеров и декадного счетчика.
Управление скоростью двигателя постоянного тока на основе ШИМ с использованием микроконтроллера:
Вот простая схема управления скоростью двигателя постоянного тока, разработанная с использованием микроконтроллера AVR.Здесь мы используем метод, называемый ШИМ (широтно-импульсная модуляция), для управления скоростью двигателя постоянного тока.
Схема звукового генератора Динг Донг:
Эта схема звукового генератора Динг Донг спроектирована с использованием микросхемы таймера 555 в нестабильном режиме. Его можно использовать как дверной звонок. С некоторыми модификациями его можно использовать для воспроизведения разных звуков. Прочтите этот пост для получения полной информации.
Охранная сигнализация на основе датчика PIR:
В этой статье объясняется система безопасности на основе PIR, в которой датчик PIR используется вместо передатчика или приемника.Это экономит энергопотребление и не требует больших затрат. Эту схему можно использовать в музеях для защиты ценных вещей.
Глушитель пульта ДУ телевизора:
Эта предлагаемая схема подавителя ТВ сбивает инфракрасный приемник в телевизоре, создавая постоянный сигнал, который мешает сигналу дистанционного управления. Если вы включите схему один раз, телевизор не получит никаких команд с пульта дистанционного управления. Это позволяет вам смотреть свою собственную программу, не меняя канал или громкость.
Сверхчувствительная охранная сигнализация:
Эта схема предназначена для предупреждения пользователя, когда злоумышленник входит в дом.Если перед ИК-датчиком есть препятствие, он генерирует сигнал прерывания. Этот сигнал прерывания выдается говорящему, чтобы предупредить пользователя.
Схема дистанционного управления через RF без микроконтроллера:
Здесь мы использовали модули RF434 МГц для создания беспроводного пульта дистанционного управления. С помощью этого пульта дистанционного управления мы можем управлять приборами в пределах 100 метров. Он используется для приложений дистанционного управления, таких как охранная сигнализация, сигнализация двери автомобиля, звонок, системы безопасности и т. Д.
Отключение высокого и низкого напряжения с задержкой и сигнализацией:
Это отключение высокого и низкого напряжения со схемой сигнализации с задержкой усовершенствованная схема автоматического стабилизатора напряжения и используется для защиты нашей бытовой техники.Стоимость его меньше по сравнению со стабилизаторами напряжения.
Схема зарядного устройства для солнечной батареи:
Вот простая схема для зарядки свинцово-кислотной аккумуляторной батареи 6 В, 4,5 Ач от солнечной панели. Это солнечное зарядное устройство имеет регулировку тока и напряжения, а также устройство отключения при перенапряжении. Эта схема также может использоваться для зарядки любой батареи при постоянном напряжении, поскольку выходное напряжение регулируется.
Автомобильное зарядное устройство. Схема:
В этой статье описываются принцип работы, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.
Контроллер уровня воды с использованием микроконтроллера 8051:
В этом проекте мы разрабатываем схему, которая используется для автоматического определения и контроля уровня воды в верхнем резервуаре с использованием микроконтроллеров 8051. Он используется в промышленности для автоматического контроля уровня жидкости.
Пустая цепь аварийной сигнализации:
Основной принцип работы схемы – мигание светодиода каждые 5 секунд. Схема состоит из микросхемы таймера 7555 в качестве основного компонента.
Цепь датчика парковки заднего хода:
Если вы новый водитель, то очень сложно определить расстояние при парковке автомобиля.Схема датчика парковки заднего хода решает эту проблему, показывая расстояние с помощью трех светодиодов. Мы легко можем разместить эту систему на задней части автомобиля.
Схема автоматического светодиодного аварийного освещения:
Это простая и экономичная схема автоматического аварийного освещения со световым датчиком. Эта система заряжается от основного источника питания и активируется при отключении основного питания. Эта аварийная лампа будет работать более 8 часов.
Система электронного кодового замка с одним транзистором:
Главный принцип этой схемы заключается в том, что дверной замок открывается только при последовательном нажатии кнопок.Транзистор и диод играют в схеме основную роль.
Автоматическое зарядное устройство:
Это зарядное устройство автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, схема автоматически заряжает аккумулятор.
Цепь переключателя с активированным освещением:
Основной принцип этой схемы состоит в том, чтобы включить свет, когда горит LDR. Эта схема может использоваться в приложениях безопасности, например, когда на LDR темно, он перестает светиться.
Схема дистанционного шпионского робота:
Это простая схема шпионского робота, которой можно управлять с пульта дистанционного управления. Максимальный управляемый диапазон – 125 метров. Он используется для наблюдения за поведением диких животных в недоступных для людей местах.
Цифровой вольтметр с микроконтроллером 8051:
Это простая схема цифрового вольтметра, разработанная с использованием микроконтроллеров 8051. Эта схема измеряет входное напряжение от 0 В до 5 В. Здесь входное напряжение должно быть постоянным, чтобы получить точный вывод на ЖК-дисплее.
Ультразвуковой дальномер с использованием 8051:
Эта схема объясняет вам, как измерять расстояние с помощью микроконтроллеров 8051. Эта ультразвуковая дальномерная система измеряет расстояние до 2,5 метров с точностью до 1 см.
Шаговый двигатель, взаимодействующий с микроконтроллером 8051:
Основным принципом этой схемы является пошаговое вращение шагового двигателя на определенный угол шага. Микросхема ULN2003 используется для управления шаговым двигателем, поскольку контроллер не может обеспечить ток, необходимый двигателю.
Схема частотомера:
Здесь мы проектируем простую систему частотомера, использующую два таймера и два счетчика. В то время как одна из микросхем таймера используется для генерации тактовых сигналов, другая используется для генерации ограниченного по времени сигнала длительностью в одну секунду.
Задержка с использованием таймеров 8051:
В этом проекте рассказывается о таймерах в микроконтроллерах 8051 и о том, как сгенерировать задержку с помощью таймеров 8051.
Подключение 7-сегментного дисплея к 8051:
В этой статье описывается, как подключить 7-сегментный дисплей к микроконтроллеру AT89C51.Эта система отображает цифры от 0 до 9 непрерывно с заранее заданной задержкой.
LC-метр с таймером 555:
Это простая схема LC-измерителя, разработанная с использованием таймера 555 и микроконтроллеров 8051. Он в основном используется для измерения значения реактивного элемента, такого как конденсатор или катушка индуктивности.
Схема ТВ-передатчика:
Основным принципом этой схемы является передача аудио- и видеосигналов. Здесь аудиосигналы модулируются по частоте, а видеосигналы модулируются по стандарту PAL.Эти модулированные сигналы поступают на антенну.
Двигатель постоянного тока, взаимодействующий с микроконтроллером 8051:
Вот простая, но очень полезная схема в нашем реальном именованном двигателе постоянного тока с микроконтроллером 8051. В нем описывается, как управлять двигателем постоянного тока с помощью контроллера AT89C51.
Схема электрошокера:
Эта схема электрошокера в основном используется в качестве оружия для оглушения или посылки ударных волн на цель с намерением ослабить или парализовать ее.
Транзисторная схема внутренней связи:
Эта транзисторная схема внутренней связи представляет собой простую двустороннюю схему внутренней связи, которая используется как для отправки, так и для приема сигналов.
Взаимодействие светодиодов с 8051:
Основной принцип этой схемы – подключение светодиодов к микроконтроллеру семейства 8051. Обычно используемые светодиоды будут иметь падение напряжения 1,7 В и ток 10 мА, чтобы светиться с полной интенсивностью. Это подается через выходной контакт микроконтроллера.
Цепь воющей сирены:
Главный принцип этой схемы – создание воющей сирены. Микросхема таймера 555 работает в стабильном режиме. Когда переключатель нажат, громкоговоритель издает сирену высокого тона, а когда он отпускается, его высота уменьшается и отключается через 30 секунд.
Схема управления звуковым сигналом:
В этой статье объясняется, как разработать схему управления звуковым сигналом с коэффициентом усиления около 25. Эта конструкция требует меньшего количества компонентов и является экономичной.
Схема удаленного кодировщика / декодера FM:
Это простая статья, в которой показано, как разработать схему удаленного кодировщика и декодера FM с использованием микросхем RF600E и RF600D. Эта пара микросхем кодера и декодера устанавливает связь с высоким уровнем безопасности. Рабочее напряжение этих микросхем от 2В до 6В.6 В постоянного тока.
Беспроводное зарядное устройство для мобильных аккумуляторов Схема:
Эта схема в основном работает по принципу взаимной индуктивности. Эта схема может использоваться как схема беспроводной передачи энергии, схема беспроводного мобильного зарядного устройства, схема беспроводного зарядного устройства аккумулятора и т. Д.
Индикатор уровня заряда батареи:
В этой статье объясняется, как разработать индикатор уровня заряда батареи. Вы можете использовать эту схему для проверки автомобильного аккумулятора или инвертора. Таким образом, используя эту схему, мы можем увеличить срок службы батареи.
Схема FM-радио:
Схема FM-радио – это простая схема, которую можно настроить на нужную частоту локально. В этой статье описывается схема схемы FM-радио. Это карманная радиосхема.
Схема светодиодной лампы с использованием порта USB:
Это простая схема светодиодной лампы USB, обеспечивающая выходное напряжение 5 В. Может использоваться как аварийный свет, а также как лампа для чтения.
Взаимодействие GPS с микроконтроллером 8051:
В этом интерфейсе GPS со схемами 8051 модуль GPS вычисляет положение, считывая сигналы, которые передаются со спутников.
Как связать часы реального времени с PIC18F:
Получите представление о RTC, схеме выводов микроконтроллера PIC и о том, как взаимодействовать RTC с PIC18F. RTC – это интегральная схема, отслеживающая текущее время.
Генератор случайных чисел с использованием 8051:
Эта схема помогает генерировать случайное число от 0 до 100 при нажатии кнопки и может использоваться в таких играх, как монополия, змейка.
Схема активного аудиокроссовера:
Аудиокроссовер – это электронный фильтр, используемый в аудиоприложениях для отправки соответствующего сигнала на динамики или драйверы.Эта схема используется в аудиосистемах HiFi для отделения частотных полос от аудиосигнала.
Схема ИК-аудиосвязи:
Эта простая ИК-схема звуковой связи используется для беспроводной передачи аудиосигналов. Этот ИК-аудиоканал может передавать аудиосигналы на расстояние до 4 метров.
Бытовая техника, управляемая мобильным телефоном:
Эта система домашней автоматизации с мобильным управлением разработана без использования микроконтроллера. Мы также можем управлять роботом с помощью этой технологии, внося некоторые изменения.
Источник питания переменного напряжения:
Это помогает спроектировать схему источника переменного тока, которая будет обеспечивать от 0 до 28 В при токе от 6 до 8 ампер. Его можно использовать в различных усилителях мощности и генераторах для обеспечения питания постоянным током.
Цифровые часы с использованием 8051:
Эта схема отображает время на ЖК-дисплее. Для этих часов мы можем установить время в любой момент. Здесь часы работают в 24-часовом режиме, а микросхема RTC настраивается программированием контроллеров 8051.
Взаимодействие GSM с 8051:
Основной принцип этой схемы заключается в взаимодействии модема GSM с микроконтроллером.Используемый микроконтроллер – микроконтроллер AT89C51.
Схема многоканального аудиомикшера:
Эта схема микширования аудиосигналов имеет 2 входа микрофона и 2 линейных входа. Если вы хотите увеличить количество входных каналов в соответствии с приложением, добавьте ту же схему параллельно с существующей схемой.
Светодиодный индикатор от затяжки до выключения Цепь:
Основной принцип работы схемы – выключить светодиод с помощью затяжки. Затяжка, приложенная к микрофону, преобразуется в очень маленькое напряжение.Это напряжение усиливается и подается на схему, чтобы светодиод погас.
Биометрическая система посещаемости:
Основная цель этой схемы – регистрировать посещаемость биометрическим методом и отображать ее по запросу. Его можно использовать в образовательных учреждениях, на производстве и т. Д.
Цепь аварийной сигнализации с активацией светом:
Главный принцип этой схемы – производить звук в зависимости от интенсивности света, падающего на цепь. По мере того, как интенсивность света, падающего на контур, увеличивается, он производит импульсы большей продолжительности и, таким образом, производит больше звука.Основная часть схемы – это микросхема таймера 555.
Электронная система безопасности с управлением глазами:
Это простая схема системы безопасности с электронным управлением глазами, разработанная с использованием регулятора напряжения 7805 и LDR. Он используется в приложениях безопасности.
Схема звуковой карты USB:
Эта схема звуковой карты USB представляет собой устройство, которое позволяет встроенной системе создавать и записывать настоящий и высококачественный звук. Прочтите этот пост для получения более подробной информации.
Цепь измерителя VU с 10 светодиодами:
Измерители VUиспользуются во многих приложениях, таких как дискотеки, для измерения уровня аудиосигналов.Вот принципиальная схема и работа LED VU Meter.
Hi-Fi Dx Bass Circuit:
Эта Hi-Fi Dx Bass Circuit описывает конструкцию, принцип и работу двухступенчатой схемы усиления низких частот с использованием простых фильтров высоких и низких частот.
Надеюсь, этот список поможет вам получить хорошие знания и поможет в практической работе, тем не менее, если у вас есть какие-либо вопросы, вы можете оставить комментарий ниже.
Если вы хотите увидеть здесь свой проект, вы можете перейти на страницу контактов и отправить запрос.
Цепи мигания светодиодов | Двухцветные светодиодные танцевальные фонари
Светодиод (Light Emitting Diode) представляет собой полупроводниковый светоизлучающий диод. Мы знаем, что диод пропускает ток в одном направлении и не допускает обратного тока, который повлияет на компоненты в цепи. Светодиод также выполняет ту же функцию, но излучает небольшой свет, когда он допускает ток, который будет давать знак или визуальную индикацию для нормального человека, что цепь работает. Есть много приложений, использующих светодиоды.Они в основном используются для визуальной индикации в любых электронных устройствах, измерения и взаимодействия с процессом, отображения изображений на телевизоре или в любых рекламных щитах и т. Д.
Соответствующий пост – Схема биполярного драйвера светодиода
Два мигания светодиода схемы приведены ниже. Первый – это танцующие двухцветные светодиоды (два светодиода разного цвета), при этом двухцветные светодиоды будут работать последовательно. Во второй схеме мы будем мигать светодиодами через равные промежутки времени.
Dancing Bi – Color LED Схема:Обычно мы используем лампочки небольшого напряжения в танцующих лампочках. Эта схема в основном используется в случаях, декоративных изделиях или в табличках с визуальной индикацией и т. Д. В этом проекте мы используем двухцветные светодиоды для последовательного освещения.
Блок-схема цепи двухцветного светодиода:
Таймер используется для установки скорости последовательного потока для двухцветной светодиодной панели. CD4017 – это декадный счетчик, который обеспечивает отсчет времени и включает / выключает светодиод в соответствии с определенным временем.
Основные компоненты в этой цепи:
CD4017: CD4017 – это 16-контактный декадный счетчик, и только 10 контактов используются для вывода. 4017 будет запускаться тактовыми импульсами. Основная работа декадного счетчика заключается в следующем: когда тактовый импульс принимается в качестве входа, только один выход становится высоким для первого тактового импульса, а остальные все выходные контакты будут иметь низкий уровень. Для второго тактового импульса другой выходной вывод становится высоким, а все остальные выводы – низкими, и так далее.Период времени выходного контакта высокий в соответствии с шириной импульса. CD4017 используется во многих приложениях, где требуется счетчик.
Тактовые импульсы CD4017 с выходных контактов, временная диаграмма показана ниже:
Двухцветный светодиодный танцующий свет Схема:Описание схемы :
- В двухцветном светодиоде это должен быть подключен к счетчику, как показано на схеме. Анод первого светодиода двухцветного светодиода соединен с анодом второго светодиода 10 -го двухцветного светодиода и таким же образом подключены остальные светодиоды, только второй анод первого двухцветного светодиода подключен к выводу сброса CD4017.В двухцветных светодиодах весь катод заземлен.
- Основная работа этой схемы зависит от таймера 555, который установлен в режим нестабильного мультивибратора, и декадного счетчика CD4017; таймер 555 будет генерировать низкочастотный тактовый импульс и давать входной сигнал декадному счетчику, который будет последовательно запускать светодиоды.
- Переменный резистор может изменять сопротивление, которое изменяет ширину импульса. При изменении ширины импульса изменяется и период работы светодиодов.Мы запускаем светодиоды быстро или медленно. Скорость движения можно изменять с помощью переменного резистора. Первый анод 10 -го двухцветного светодиода замкнут на вывод сброса счетчика декодирования для непрерывной работы света.
LED Flasher представляет собой простую схему, которая будет мигать светодиодами через определенный промежуток времени. Эта схема может использоваться в целях украшения или может использоваться для целей сигнализации и многого другого.
Блок-схема цепи мигания светодиода:
Таймер 555 используется для генерации сигнала ШИМ, который заставляет светодиоды мигать.Скорость мигания светодиода определяется потенциометром, подключенным к таймеру 555. Транзистор PNP используется для мигания или мигания светодиодов.
Светодиодная схема мигания:Описание схемы:
- Таймер 555 сконфигурирован как нестабильный мультивибратор. Потенциометр, который подключен к таймеру, должен быть предварительно установлен, а также для регулировки скорости мигания или мигания светодиодов.
- В этой цепи используются двухцветные светодиоды, которые подключены друг к другу, как показано на схеме.Сигнал PWM – это выход таймера 555, подаваемый на транзистор, который действует как инвертор. Когда импульс, генерируемый таймерами 555, низкий, транзистор включается, а светодиоды загораются. Когда на входе транзистора высокий уровень, транзистор выключится, а светодиоды выключатся. Это включение / выключение светодиодов будет происходить для каждого цикла широтно-импульсного сигнала. Этот механизм заставит светодиоды мигать.
- Танцующие светодиодные схемы могут использоваться для любой визуальной индикации знаков на любых автомагистралях, а также для размещения рекламных щитов.
- Схема мигания светодиода может использоваться в целях сигнализации (может использоваться как сигнал помощи, если вы находитесь в опасности)
- Схема мигания светодиода может использоваться как мигающий маяк.
- Светодиодная мигающая цепь может использоваться как индикатор транспортного средства, когда он сломался посреди дороги. Его можно использовать в операционных или офисах как признак того, что вы заняты работой.
- С этими двумя схемами можно найти множество применений.
Простые электронные схемы для начинающих и студентов инженерных специальностей
Как правило, успех первых проектов играет жизненно важную роль в области электроники для карьеры студентов-инженеров.Многие студенты бросают электронику из-за неудачной первой попытки. После нескольких неудач у ученика остается неправильное представление о том, что эти проекты, работающие сегодня, могут не сработать завтра. Таким образом, мы предлагаем новичкам начать со следующих проектов, которые дадут результат с первой попытки и дадут мотивацию для вашей собственной работы. Прежде чем продолжить, вы должны знать, как работает и используется макетная плата. В этой статье приведены 10 лучших простых электронных схем для начинающих и мини-проекты для студентов инженерных специальностей, но не для проектов последнего года обучения.Следующие схемы относятся к основным и малым категориям.
Что такое простые электронные схемы?
Соединение различных электрических и электронных компонентов с помощью соединительных проводов на макетной плате или путем пайки на печатной плате с образованием цепей, которые называются электрическими и электронными цепями. В этой статье давайте обсудим несколько простых проектов электроники для начинающих, которые построены на простых электронных схемах.
Простые электронные схемы для начинающих
Список десяти основных простых электронных схем, обсуждаемых ниже, очень полезен для новичков при выполнении практики, проектирование этих схем помогает справиться со сложными схемами.
Схема освещения постоянного тока
Источник постоянного тока используется для небольшого светодиода с двумя выводами, а именно анодом и катодом. Анод – + ve, катод – –ve. Здесь в качестве нагрузки используется лампа с двумя выводами, положительным и отрицательным. Положительные клеммы лампы подключены к анодной клемме батареи, а отрицательная клемма батареи подключена к отрицательной клемме батареи. Переключатель подключен между проводами, чтобы подавать постоянное напряжение на светодиодную лампу.
Освещение постоянным током Простая электронная схемаСигнализация дождя
Следующая схема защиты от дождя используется для оповещения, когда идет дождь. Эта схема используется в домах для защиты их выстиранной одежды и других вещей, которые уязвимы для дождя, когда они остаются дома большую часть времени на работе. Необходимыми компонентами для построения этой схемы являются датчики. Резисторы 10K и 330K, транзисторы BC548 и BC 558, батарея 3V, конденсатор 01mf и динамик.
Цепь аварийной сигнализации о дождеВсякий раз, когда дождевая вода вступает в контакт с датчиком в указанной выше цепи, через цепь протекает ток, чтобы активировать транзистор Q1 (NPN), а также транзистор Q1 делает активным транзистор Q2 (PNP).Таким образом, транзистор Q2 проводит, а затем ток через динамик генерирует звук зуммера. Пока зонд не соприкоснется с водой, эта процедура повторяется снова и снова. В приведенной выше схеме построен колебательный контур, который изменяет частоту тона, и, таким образом, тон может быть изменен.
Простой монитор температуры
Эта схема дает индикацию с помощью светодиода, когда напряжение батареи падает ниже 9 вольт. Эта схема идеальна для контроля уровня заряда батарейки на 12 В.Эти батареи используются в системах охранной сигнализации и портативных устройствах. Работа этой схемы зависит от смещения клеммы базы транзистора T1.
Простая электронная схема монитора температурыКогда напряжение батареи превышает 9 вольт, то напряжение на клеммах база-эмиттер будет таким же. Это отключает как транзисторы, так и светодиоды. Когда напряжение батареи падает ниже 9 В из-за использования, базовое напряжение транзистора T1 падает, в то время как напряжение его эмиттера остается неизменным, поскольку конденсатор C1 полностью заряжен.На этом этапе клемма базы транзистора T1 становится + ve и включается. Конденсатор C1 разряжается через светодиодный индикатор
Схема датчика касания
Схема датчика касания состоит из трех компонентов, таких как резистор, транзистор и светодиод. Здесь и резистор, и светодиод подключены последовательно с положительным питанием к клемме коллектора транзистора.
Простая электронная схема датчика касанияВыберите резистор, чтобы установить ток светодиода примерно на 20 мА.Теперь подключите соединения на двух открытых концах: одно соединение идет к плюсовому проводу, а другое – к клемме базы транзистора. Теперь коснитесь этих двух проводов пальцем. Коснитесь этих проводов пальцем, тогда загорится светодиод!
Схема мультиметра
Мультиметр – это важная, простая и базовая электрическая схема, которая используется для измерения напряжения, сопротивления и тока. Он также используется для измерения параметров постоянного и переменного тока. Мультиметр включает в себя гальванометр, подключенный последовательно с сопротивлением.Напряжение в цепи можно измерить, поместив щупы мультиметра в цепь. Мультиметр в основном используется для проверки целостности обмоток двигателя.
Мультиметр Простая электронная схемаСхема светодиодной мигалки
Конфигурация схемы светодиодной мигалки показана ниже. Следующая схема построена с использованием одного из самых популярных компонентов, таких как таймер 555 и интегральные схемы. Эта цепь будет мигать светодиодом ON и OFF через равные промежутки времени.
LED Flasher Простая электронная схемаСлева направо в схеме конденсатор и два транзистора устанавливают время, необходимое для включения или выключения светодиода. Изменяя время, необходимое для зарядки конденсатора, чтобы активировать таймер. Таймер IC 555 используется для определения времени, в течение которого светодиод остается включенным и выключенным.
Включает в себя сложную схему внутри, но поскольку она заключена в интегральную схему. Два конденсатора расположены с правой стороны таймера, и они необходимы для правильной работы таймера.Последняя часть – это светодиод и резистор. Резистор используется для ограничения тока светодиода. Так что он не повредит
Невидимая охранная сигнализация
Схема невидимой охранной сигнализации построена на фототранзисторе и ИК-светодиоде. Если на пути инфракрасных лучей нет препятствий, сигнал тревоги не будет издавать звуковой сигнал. Когда кто-то пересекает инфракрасный луч, возникает звуковой сигнал тревоги. Если фототранзистор и инфракрасный светодиод заключены в черные трубки и правильно соединены, дальность действия цепи составляет 1 метр.
Простая электронная схема охранной сигнализацииКогда инфракрасный луч падает на фототранзистор L14F1, он защищает BC557 (PNP) от проводимости, и зуммер не будет генерировать звук в этом состоянии. Когда инфракрасный луч прерывается, фототранзистор выключается, позволяя транзистору PNP работать, и звучит зуммер. Закрепите фототранзистор и инфракрасный светодиод на обратной стороне в правильном положении, чтобы зуммер не работал. Отрегулируйте переменный резистор, чтобы установить смещение транзистора PNP.Здесь можно использовать и другие типы фототранзисторов вместо LI4F1, но L14F1 более чувствителен.
Светодиодная схема
Светоизлучающий диод – это небольшой компонент, излучающий свет. Использование светодиода дает много преимуществ, потому что оно очень дешевое, простое в использовании, и мы можем легко понять, работает схема или нет, по ее индикации.
Светодиодная простая электронная схемаВ условиях прямого смещения дырки и электроны через переход перемещаются вперед и назад.В этом процессе они будут объединяться или иным образом устранять друг друга. Через некоторое время, если электрон перейдет из кремния n-типа в кремний p-типа, то этот электрон объединится с дыркой и исчезнет. Он делает один полный атом, и он более стабилен, поэтому он будет генерировать небольшое количество энергии в виде фотонов света.
В условиях обратного смещения положительный источник питания будет отводить все электроны, присутствующие в переходе. И все отверстия будут тянуться к отрицательной клемме.Таким образом, переход обеднен носителями заряда, и ток через него не течет.
Анод – длинный штифт. Это вывод, который вы подключаете к наиболее положительному напряжению. Катодный вывод должен подключаться к наиболее отрицательному напряжению. Для работы светодиода они должны быть правильно подключены.
Простой метроном светочувствительности с использованием транзисторов
Любое устройство, которое производит регулярные метрические тики (удары, щелчки), мы можем назвать его метрономом (устанавливаемое количество ударов в минуту).Здесь галочки означают фиксированный регулярный слуховой пульс. Синхронизированное визуальное движение, такое как качание маятника, также включено в некоторые метрономы.
Простая электронная схема метронома светочувствительностиЭто простая схема метронома светочувствительности, использующая транзисторы. В этой схеме используются два типа транзисторов, а именно транзисторы с номерами 2N3904 и 2N3906, составляющие цепь исходной частоты. Звук из громкоговорителя будет увеличиваться и уменьшаться по частоте в звуке. LDR используется в этой схеме LDR означает светозависимый резистор, также мы можем назвать его фоторезистором или фотоэлементом.LDR – это регулируемый светорезистор.
Если интенсивность падающего света увеличивается, сопротивление LDR будет уменьшаться. Это явление называется фотопроводимостью. Когда ведущий световой проблесковый маячок приближается к LDR в темной комнате, он получает свет, тогда сопротивление LDR падает. Это усилит или повлияет на частоту источника, частоту звукового контура. Дерево непрерывно ласкает музыку из-за изменения частоты в цепи. Просто посмотрите на приведенную выше схему для получения других подробностей.
Схема сенсорного сенсорного переключателя
Принципиальная схема сенсорного сенсорного переключателя показана ниже. Эта схема может быть построена на IC 555 в режиме моностабильного мультивибратора. В этом режиме эта ИС может быть активирована путем создания высокого логического уровня в ответ на вывод 2. Время, необходимое для генерации выходного сигнала, в основном зависит от номиналов конденсатора (C1) и переменного резистора (VR1).
Чувствительный переключатель на основе касанияПосле касания сенсорной пластины контакт 2 микросхемы будет перемещен к менее логическому потенциалу, например, ниже 1/3 Vcc.Состояние выхода может быть возвращено с низкого на высокий по времени, чтобы активировать ступень срабатывания реле. Как только конденсатор C1 разряжен, активируются нагрузки. Здесь нагрузки подключаются к контактам реле, и управление им может осуществляться через контакты реле.
Электронный глаз
Электронный глаз в основном используется для наблюдения за гостями у основания входной двери. Вместо звонка он подключается к двери с помощью LDR. Каждый раз, когда посторонний человек пытается открыть дверь, тень этого человека падает на LDR.Затем немедленно активируется схема, генерирующая звук с помощью зуммера.
Electronic EyeПроектирование этой схемы может быть выполнено с использованием логического элемента, например, НЕ с использованием D4049 CMOS IC. Эта ИС имеет шесть отдельных вентилей НЕ, но в этой схеме используется только один вентиль НЕ. Как только выход логического элемента НЕ высокий, а вход pin3 меньше по сравнению с 1/3 ступени источника напряжения. Точно так же, когда уровень напряжения питания увеличивается выше 1/3, выход становится низким.
Выход этой схемы имеет два состояния, например 0 и 1, и в этой схеме используется батарея 9 В.Контакт 1 в схеме может быть подключен к источнику положительного напряжения, тогда как контакт 8 подключен к клемме заземления. В этой схеме LDR играет основную роль в обнаружении тени человека, и его значение в основном зависит от яркости падающей на него тени.
Схема делителя потенциала построена через резистор 220 кОм и LDR, подключенные последовательно. Как только LDR получает меньше напряжения в темноте, он получает больше напряжения от делителя напряжения. Это разделенное напряжение можно использовать как вход затвора НЕ.Как только: LDR становится темным и входное напряжение этого затвора уменьшается до 1/3 напряжения, тогда на контакте 2 появляется высокое напряжение. Наконец, будет активирован зуммер для генерации звука.
FM-передатчик с использованием UPC1651
Ниже показана схема FM-передатчика, работающего от 5 В постоянного тока. Эта схема может быть построена с кремниевым усилителем, например ICUPC1651. Коэффициент усиления этой схемы находится в широком диапазоне, например 19 дБ, тогда как частотная характеристика составляет 1200 МГц. В этой схеме аудиосигналы можно принимать с помощью микрофона.Эти звуковые сигналы поступают на второй вход микросхемы через конденсатор С1. Здесь конденсатор действует как фильтр шума.
FM-передатчикFM-модулированный сигнал допустим на контакте 4. Здесь этот контакт 4 является выходным контактом. В приведенной выше схеме LC-цепь может быть сформирована с использованием катушки индуктивности и конденсатора, таких как L1 и C3, так что могут возникать колебания. Таким образом, изменяя конденсатор C3, можно изменять частоту передатчика.
Автоматический светильник для уборной
Вы когда-нибудь думали о какой-либо системе, которая способна включать свет в вашей туалетной комнате, когда вы входите в нее, и выключать свет, когда вы выходите из ванной?
Действительно ли возможно включить свет в ванной, просто войдя в ванную, и выключить, просто выйдя из ванной? Да, это! С автоматической домашней системой вам вообще не нужно нажимать какой-либо переключатель, наоборот, все, что вам нужно сделать, это открыть или закрыть дверь – вот и все.Чтобы получить такую систему, все, что вам нужно, – это нормально замкнутый переключатель, OPAMP, таймер и лампа на 12 В.
Необходимые компоненты
Подключение цепей
OPAMP IC 741 – это одиночная микросхема OPAMP, состоящая из 8 контактов. Контакты 2 и 3 являются входными контактами, контакт 3 – неинвертирующим контактом, а контакт 2 – инвертирующим контактом. Фиксированное напряжение через устройство делителя потенциала подается на контакт 3, а входное напряжение через переключатель подается на контакт 2.
Используемый переключатель представляет собой нормально замкнутый переключатель SPST. Выходной сигнал OPAMP IC подается на микросхему таймера 555, которая при запуске (низким напряжением на входном выводе 2) генерирует высокий логический импульс (с напряжением, равным его источнику питания 12 В) на своем выходном контакте. 3. Этот выходной контакт подключен к лампе 12 В.
Принципиальная схема
Автоматическое освещение для уборнойРабота контура
Переключатель размещается на стене таким образом, что при открытии двери путем ее полного толкания к стене открывается нормально закрытый переключатель. когда дверь касается стены.Используемый здесь OPAMP работает как компаратор. Когда переключатель разомкнут, инвертирующий терминал подключается к источнику питания 12 В, и напряжение приблизительно 4 В подается на неинвертирующий терминал.
Теперь, когда напряжение на неинвертирующем выводе меньше, чем на инвертирующем выводе, на выходе OPAMP генерируется низкий логический импульс. Он поступает на вход таймера IC через схему делителя потенциала. ИС таймера запускается при низком логическом сигнале на своем входе и генерирует высокий логический импульс на своем выходе.Здесь таймер работает в моностабильном режиме. Когда лампа получает этот сигнал 12 В, она светится.
Точно так же, когда человек выходит из туалета и закрывает дверь, переключатель возвращается в свое нормальное положение и закрывается. Поскольку неинвертирующий вывод OPAMP находится под более высоким напряжением по сравнению с инвертирующим выводом, на выходе OPAMP высокий логический уровень. Это не может запустить таймер; так как таймер не выводит сигнал, лампа выключается.
Автоматический дверной звонокВы когда-нибудь задумывались? как легко было бы, если бы вы пошли к себе домой из офиса, очень уставший и подошел к двери, чтобы ее закрыть.Внезапно внутри раздается звонок, затем кто-то открывает дверь, не нажимая.
Вы могли подумать, что это похоже на сон или иллюзию, но это не так; это реальность, которой можно достичь с помощью нескольких основных электронных схем. Все, что требуется, – это расположение датчиков и цепь управления для срабатывания сигнализации на основе входного сигнала датчика.
Необходимые компоненты
Схема подключения
Используемый датчик представляет собой инфракрасный светодиод и фототранзистор, размещенные рядом друг с другом.Выходной сигнал сенсорного блока подается на микросхему таймера 555 через транзистор и резистор. Вход на таймер поступает на вывод 2.
На сенсорный блок подается напряжение 5 В, а на вывод 8 микросхемы таймера подается напряжение Vcc напряжением 9 В. К выходному выводу 3 таймера подключен зуммер. Другие контакты таймера IC подключаются аналогичным образом, так что таймер работает в моностабильном режиме.
Принципиальная схема
Автоматический дверной звонокРабота схемы
Инфракрасный светодиод и фототранзистор расположены так, чтобы при нормальной работе фототранзистор не светился и не проводил ток.Таким образом, транзистор (поскольку он не получает никакого входного напряжения) не проводит.
Так как входной контакт 2 таймера находится на высоком логическом уровне, он не срабатывает, и зуммер не звонит, так как он не получает никакого входного сигнала. Если человек приближается к двери, свет, излучаемый светодиодом, принимается этим человеком и отражается обратно. Фототранзистор принимает этот отраженный свет и затем начинает проводить.
Когда этот фототранзистор проводит, транзистор смещается и тоже начинает проводить.На вывод 2 таймера поступает низкий логический сигнал, и таймер запускается. Когда этот таймер запускается, на выходе генерируется высокий логический импульс 9 В, и когда зуммер получает этот импульс, он срабатывает и начинает звонить.
Простая сигнализация о дождевой воде
Хотя дождь необходим для всех, особенно для сельскохозяйственных секторов, временами его последствия разрушительны, и даже многие из нас часто избегают дождя, опасаясь промокнуть, особенно когда идет дождь тяжело.Даже если мы заперты в машине, внезапный сильный ливень ограничивает нас и застревает под сильным дождем. Лобовое стекло работающего автомобиля в таких условиях становится делом довольно хлопотным.
Следовательно, час должен иметь систему индикаторов, которая может указывать на возможность дождя. Компоненты такой простой схемы включают OPAMP, таймер, зуммер, два датчика и, конечно же, несколько основных электронных компонентов. Разместив эту схему внутри вашего автомобиля, дома или в любом другом месте, а датчики снаружи, вы можете разработать простую систему для обнаружения дождя.
Необходимые компоненты
Схема подключения
В качестве компаратора используется OPAMP IC LM741. Два датчика предусмотрены в качестве входа для инвертирующего терминала OPAMP таким образом, что, когда дождевая вода попадает на датчики, они соединяются вместе. На неинвертирующий вывод подается фиксированное напряжение через устройство делителя потенциала.
Выходной сигнал OPAMP на выводе 6 подается на вывод 2 таймера через подтягивающий резистор.Контакт 2 таймера 555 является контактом срабатывания. Здесь таймер 555 подключен в моностабильном режиме, так что, когда он запускается на выводе 2, выходной сигнал генерируется на выводе 3 таймера. Конденсатор емкостью 470 мкФ подключается между выводом 6 и землей, а конденсатор емкостью 0,01 мкФ подключается между выводом 5 и землей. Резистор на 10 кОм подключен между контактами 7 и питанием Vcc.
Принципиальная схема
Простая система сигнализации о дождевой водеРабота контура
Когда нет дождя, датчики не соединяются между собой (здесь вместо датчиков используется кнопка с ключом), и, следовательно, нет напряжения на инвертирующий вход OPAMP.Поскольку на неинвертирующий терминал подается фиксированное напряжение, на выходе OPAMP высокий логический уровень. Когда этот сигнал подается на входной контакт таймера, он не срабатывает, и выход отсутствует.
Когда начинается дождь, датчики соединяются между собой каплями воды, поскольку вода является хорошим проводником тока, и, следовательно, ток начинает течь через датчики, и на инвертирующий вывод OPAMP подается напряжение. Это напряжение больше, чем фиксированное напряжение на неинвертирующем выводе, и в результате выход OPAMP находится на низком логическом уровне.
Когда это напряжение подается на вход таймера, таймер запускается и генерируется высокий логический уровень на выходе, который затем передается на зуммер. Таким образом, при обнаружении дождевой воды зуммер начинает звонить, указывая на дождь.
Мигающие лампы с таймером 555
Мы все любим фестивали, и поэтому, будь то Рождество, Дивали или любой другой праздник, первое, что приходит в голову, – это украшение. Что может быть в таком случае лучше, чем применить свои знания в области электроники для украшения вашего дома, офиса или любого другого места? Хотя существует много типов сложных и эффективных систем освещения, здесь мы сосредоточимся на простой схеме мигающей лампы.
Основная идея здесь состоит в том, чтобы изменять интенсивность ламп с интервалом в одну минуту, и для этого мы должны обеспечить колебательный вход на переключатель или реле, управляющее лампами.
Необходимые компоненты
Подключение цепи
В этой системе таймер 555 используется в качестве генератора, способного генерировать импульсы с интервалом максимум 10 минут. Частоту этого временного интервала можно регулировать с помощью переменного резистора, подключенного между разрядным выводом 7 и выводом 8 Vcc таймера IC.Значение другого резистора установлено на 1 кОм, а конденсатор между контактами 6 и 1 установлен на 1 мкФ.
Выход таймера на выводе 3 подается на параллельную комбинацию диода и реле. В системе используется реле с нормально замкнутыми контактами. В системе используются 4 лампы: две из которых соединены последовательно, а две другие пары последовательно соединенных ламп соединены параллельно друг другу. Переключатель DPST используется для управления переключением каждой пары ламп.
Принципиальная схема
Мигающие лампы с использованием таймера 555Работа схемы
Когда эта схема получает питание 9 В (также может быть 12 или 15 В), таймер 555 генерирует колебания на своем выходе.Диод на выходе используется для защиты. Когда на катушку реле поступают импульсы, на нее подается питание.
Предположим, общий контакт переключателя DPST подключен таким образом, что верхняя пара ламп получает питание 230 В переменного тока. Поскольку переключение реле изменяется из-за колебаний, яркость ламп также меняется, и они кажутся мигающими. То же самое происходит и с другой парой ламп.
Зарядное устройство с SCR и таймером 555
В настоящее время все электронные устройства, которые вы используете, зависят от источника питания постоянного тока для своей работы.Обычно они получают этот источник питания от источника переменного тока в доме и используют схему преобразователя для преобразования этого переменного тока в постоянный.
Однако, в случае сбоя питания можно использовать аккумулятор. Но главная проблема батарей – их ограниченный срок службы. Тогда что делать дальше? Есть способ, как можно использовать аккумуляторные батареи. Далее самая большая проблема – это эффективная зарядка аккумуляторов.
Для решения такой проблемы разработана простая схема с использованием SCR и таймера 555, обеспечивающая контролируемую зарядку и разрядку аккумулятора с индикацией.
Компоненты цепи
Подключение цепи
Питание 230 В подается на первичную обмотку трансформатора. Вторичная обмотка трансформатора подключена к катоду кремниевого управляющего выпрямителя (SCR). Затем анод SCR подключается к лампе, а затем параллельно подключается аккумулятор. Затем комбинация из двух резисторов (R5 и R4) подключается последовательно с потенциометром 100 Ом на батарее. Используется таймер 555 в моностабильном режиме, который запускается последовательной комбинацией диода и транзистора PNP.
Принципиальная схема Зарядное устройство
с использованием SCR и таймера 555Работа схемы
Понижающий трансформатор снижает напряжение переменного тока на первичной обмотке, и это пониженное напряжение переменного тока подается на вторичную обмотку. Используемый здесь SCR действует как выпрямитель. В нормальном режиме работы, когда SCR проводит, он позволяет постоянному току течь к батарее. Всякий раз, когда батарея заряжается, небольшой ток проходит через схему делителя потенциала R4, R5 и потенциометр.
Поскольку на диод поступает очень малый ток, он незначительно проводит его. Когда это небольшое смещение применяется к транзистору PNP, он становится проводящим. В результате транзистор соединяется с землей, и на входной вывод таймера подается низкий логический сигнал, который запускает таймер. Затем выходной сигнал таймера подается на вывод затвора SCR, который запускается на проводимость.
Если аккумулятор полностью заряжен, он начинает разряжаться, ток через устройство делителя потенциала увеличивается, и диод также начинает сильно проводить, а затем транзистор оказывается в области отсечки.При этом не запускается таймер, и в результате SCR не срабатывает, и это прекращает подачу тока на батарею. Индикация заряда батареи отображается при помощи светящейся лампы.
Простые электронные схемы для студентов инженерных специальностей
Существует несколько простых электронных проектов для начинающих, которые включают проекты DIY (сделай сам), проекты без пайки и т. Д. Проекты без пайки можно рассматривать как проекты электроники для начинающих, поскольку это очень простые электронные схемы.Эти беспаечные проекты могут быть реализованы на макетной плате без какой-либо пайки, поэтому их называют беспаечными проектами.
Проекты: датчик ночного освещения, индикатор уровня верхнего резервуара для воды, светодиодный диммер, полицейская сирена, звонок на основе сенсорной точки, автоматическое освещение задержки туалета, система пожарной сигнализации, полицейские огни, умный вентилятор, кухонный таймер и так далее. примеры простых электронных схем для начинающих.
Простые электронные схемы для начинающихSmart Fan
Вентиляторы часто используются в электронных устройствах в жилых домах, офисах и т. Д., для вентиляции и предотвращения удушья. Этот проект предназначен для сокращения потерь электроэнергии за счет автоматического переключения.
Схема интеллектуального вентилятораПроект интеллектуального вентилятора представляет собой простую электронную схему, которая включается, когда человек находится в комнате, и вентилятор выключается, когда человек выходит из комнаты. Таким образом можно уменьшить количество потребляемой электроэнергии. Блок-схема интеллектуального вентилятора
Электронная схема интеллектуального вентилятора состоит из ИК-светодиода и фотодиода, используемого для обнаружения человека.Таймер 555 используется для управления вентилятором, если пара ИК-светодиода и фотодиода обнаруживает кого-либо, тогда срабатывает таймер 555.
Night Sensing Light
Night Sensing Light by www.edgefxkits.comНочной светильник – это одна из самых простых в разработке электронных схем, а также самая мощная схема для экономии электроэнергии за счет автоматического переключения освещения. Наиболее часто используемые электронные приборы – это фонари, но всегда трудно управлять ими, запоминая.
Блок-схема ночного освещенияСхема ночного освещения будет управлять светом в зависимости от интенсивности света, падающего на датчик, используемый в цепи. Светозависимый резистор (LDR) используется в качестве светового датчика в цепи, которая автоматически включает и выключает свет без какой-либо поддержки человека.
Светодиодный диммер
Светодиодный диммерСветодиодные лампы предпочтительнее, так как они наиболее эффективны, долговечны и потребляют очень мало энергии. Функция затемнения светодиодов используется для различных целей, таких как запугивание, украшение и т. Д.Несмотря на то, что светодиоды проектируются для диммирования, для повышения производительности можно использовать схемы диммеров.
Блок-схема светодиодного диммераСветодиодный диммер – это простые электронные схемы, разработанные с использованием микросхемы таймера 555, полевого МОП-транзистора, регулируемого предварительно установленного резистора и мощного светодиода. Схема подключена, как показано на рисунке выше, и яркость можно регулировать от 10 до 100 процентов.
Звонок вызова на основе точки касания
Звонок вызова на основе точки касания отВ повседневной жизни мы обычно используем множество простых электронных схем, таких как звонок для вызова, ИК-пульт дистанционного управления для телевизора, переменного тока и т. Д., и так далее. Обычная система звонка состоит из переключателя, который управляет и издает звук зуммера или загорается индикатор.
Блок-схема звонка на основе точки касанияЗвонок вызова на основе точки касания – это инновационная и простая электронная схема, разработанная для замены обычного звонка. Схема состоит из сенсорного датчика, микросхемы таймера 555, транзистора и зуммера. Если человеческое тело касается сенсорного датчика цепи, то напряжение, возникающее на сенсорной пластине, используется для запуска таймера.Таким образом, выходной сигнал таймера 555 становится высоким в течение фиксированного интервала времени (на основе постоянной времени RC). Этот выход используется для управления транзистором, который, в свою очередь, включает зуммер на этот интервал времени и автоматически выключается после этого.
Система пожарной сигнализации
Система пожарной сигнализацииСамая важная электронная схема для дома, офиса, любого места, где есть вероятность пожара, – это система пожарной сигнализации. Всегда сложно даже представить пожарную аварию, поэтому система пожарной сигнализации помогает потушить пожар или спастись от пожара, уменьшить человеческие жертвы и материальный ущерб.
Блок-схема системы пожарной сигнализацииПростой электронный проект, построенный с использованием светодиодного индикатора, транзистора и термистора, может быть использован в качестве системы пожарной сигнализации. Этот проект можно использовать даже для индикации высоких температур (пожар вызывает высокие температуры), чтобы систему охлаждения можно было включить, чтобы снизить температуру до ограниченного диапазона. Термистор (датчик температуры) используется для определения изменений температуры и, таким образом, изменяет вход транзистора. Таким образом, если диапазон температур превышает ограниченное значение, тогда транзистор включит светодиодный индикатор, чтобы указать высокую температуру.
Это все о 10 лучших простых электронных схемах для начинающих, которые заинтересованы в разработке своих простых электронных схем. Мы надеемся, что эти типы схем будут полезны для начинающих, а также студентов-инженеров. Кроме того, любые вопросы, касающиеся проектов по электрике и электронике для студентов-инженеров, просьба оставлять отзывы, комментируя в разделе комментариев ниже. Вот вам вопрос, что такое активные и пассивные компоненты?
Фото:
15 Простая электронная схема для начинающих
Вы интересуетесь электроникой? Конечно, теория утомительна.
Начнем с более простых электронных схем.
Для новичков или тех, кто хочет, чтобы трасса была быстрой и недорогой.
Кроме того, это отличное обучение! Почему?
Потому что понимание простых электронных схем – хорошее основание.
Сказал мой друг.
«Большой проект электроники включает в себя множество небольших электронных схем»
Как вы думаете, правда?
Я тоже думаю, что это правда. Некоторые из ваших работ могут нуждаться в крошечных деталях.Так что небольшие схемы помогут ему хорошо работать.
Ну и что,
Я использовал для создания множества небольших схем. Конечно, на это нужно много времени. Наше время дорого.
Я хочу помочь вам выбрать эту простую схему. И строить быстро вовремя.
Всего ниже 15 цепей.
1 # Lego Автоматический светодиодный фонарик
Попробуйте простой автоматический светодиодный фонарик. Всего с 5 частями.
Узнайте о том, что транзистор, LDR, светодиоды и многое другое работают вместе как делитель напряжения.
Подробнее об этой схеме
Он будет подавать звуковой сигнал, когда почва высохнет. Итак, деревья не умирают.
Солнечная батарея работает от источника постоянного тока напряжением 6 В. Так что экономия на удобстве и не требует батарей.
Схема без использования печатной платы. Вы можете легко построить из нескольких частей.
Подробнее об этой схеме
3 # Сделайте источник питания 12 В 2 А постоянного тока
Если вы ищете адаптер переменного тока 12 В, простой проект.
Вам может понравиться эта схема.
Он может питать все цепи, требующие источника постоянного тока 12 В до 2 А.
Например, автомобильная аудиосистема: Усилитель TDA2004.
В любом случае, давайте вернемся к этой схеме.
Это особенная постройка с молотком!
Подробнее об этой схеме
4 # Регулятор постоянного напряжения с использованием 78xx
Обычно основным источником питания электронной схемы является аккумулятор.
Энергия чистая и безопасная, поскольку она мала.
Например, в большинстве схем используется батарея на 9 В. Когда его сила ушла.
Надо купить новую замену. Это совсем не удобно.
Таким образом, делаю вместо него блок питания на 9В.
Первый выбор, мы рекомендуем LM7809.
Это один из популярных трехконтактных линейных регуляторов семейства IC-78xx.
См. В схеме выше.
Напряжение переменного тока от 12 В до 18 В от трансформатора подается на D1-D4.Они выпрямляют переменный ток в постоянный.
Затем C1 фильтрует сглаживание постоянного тока.
Затем 7809 преобразует это нерегулируемое постоянное напряжение в стабильное + 9В.
Дополнительно, если нужны другие уровни напряжения.
Например, 5 В цифровой, мы используем IC-7805 вместо IC-7809.
Итак, используйте IC-7812 для выхода 12 В постоянного тока.
Если вы хотите построить это.
Вы можете увидеть еще простых электронных схем с разводкой печатной платы.
Подробнее об этой схеме
5 # Первый источник переменного тока
1.5 А, от 1,2 В до 30 В Регулируемый источник питания с использованием LM317Иногда необходимо использовать цепь питания 1,5 В.
Но вы не можете использовать IC-7805. Или же.
Вам необходимо использовать другое напряжение, например 13 В или 4,5 В.
Рекомендуется: Калькулятор микросхемы регулятора напряжения LM317
Лучше всего использовать регулируемый источник питания.
Для новичков и самых простых мы используем LM317 (трехконтактные регулируемые регуляторы с положительным регулированием).
LM317 – это ИС регулируемого регулятора, предназначенная для многих источников питания для 1.Выход 5А.
Связано: LM317 2N3055 Источник переменного тока
Кроме того, он регулируется от 1,2 В до 37 В, с ограничением тока, тепловым отключением, полной защитой.
Эта схема создана для вас.
Он может подавать напряжение от 1,2 В до 30 В во всем диапазоне около 1 А.
Подробнее об этой схеме
6 # 30-минутный транзисторный таймер
Мы можем использовать эту простую электронную схему.Изучить основную схему таймера.
Работа схемы основана на изучении заряда и разряда конденсатора.
И мы можем применить его для включения-выключения электроприборов.
Приложение, просто поставь реле вместо светодиода.
Подробнее об этой схеме
7 # Бесконтактный тестер напряжения
Вам нужен инструмент для проверки сети переменного тока без прикосновения?
Эта схема может это сделать.
Проще говоря, внутри схемы используются транзисторы без микросхемы.
Вы можете услышать звук и отобразить его на светодиодном дисплее.
Подробнее об этой схеме
8 # Таймер 5-30 минут с использованием IC 555
В этой схеме таймера используется таймер 555 IC. Это маленький, компактный и портативный.
Для сигнализации с помощью зуммера. Мы можем выбрать время 5, 10, 15 и 30 минут с S3 до S7 в качестве порядка.
Это дает понять, что мозг готов продолжать работать.
Это нравится многим друзьям.Вам тоже может понравиться.
Вы можете читать дальше : это таймер на 5-30 минут с разводкой печатной платы.
9 # Простейший инвертор на транзисторах
Когда вам нужно использовать небольшую лампочку с батареей 12 В. Но света нет. Почему? Для этой лампочки требуется высокое напряжение 220 В переменного тока. Как преобразовать 12 В постоянного тока в 220 В переменного тока 50 Гц?
У вас может быть много идей на этот счет. Но если вы торопитесь, вот еще одна простая идея. Называется самый простой инвертор.
Он использует только два силовых транзистора, два резистора и один трансформатор.Так просто! Вы можете иметь их в магазине. […]
Подробнее об этой схеме
Если вы хотите сделать забавную схему для людей. Эта схема может вызвать смех. Это небольшая электрическая цепь высокого напряжения. На выходе низкий ток. Это не вредно для людей.
Внутри схемы есть несколько компонентов: два небольших NPN-транзистора, 2 резистора и трансформатор. Так легко строить и недорого!
Подробнее об этой схеме
11 # Низковаттный аудиоусилитель с печатной платой
Это моя первая схема аудиоусилителя.Я использую LM386 в качестве основного, это усилитель низкого напряжения (5V-12V), разработанный специально для аудио приложений.
Который можно использовать с маленьким 9-вольтовым аккумулятором. Потребление тока всего 5 мА. И усиление до 500 мВт.
Коэффициент усиления внутренне установлен на 20. Коэффициент усиления можно увеличить до 200, подключив конденсатор емкостью 10 мкФ к контактам 1 (+) и 8 (-). Достаточно, чтобы легко расширить звук мобильного телефона до 3-дюймового динамика.
Подробнее об этой схеме
12 # Стереоусилитель мощности низкого напряжения
Это мои первые комплекты схем стереоусилителя мощности, которые можно использовать с небольшой 9-вольтовой батареей, потребляемой током всего 5 миллиампер.И усиление до 500 мВт.
Подробнее об этой схеме
13 # Цепи LED Chaser с использованием 4017 + 555
Есть 5 цепей с печатными платами для цепей LED Chaser или ходовых огней.
Они используют IC-4017 для управления светодиодами и IC-555 в качестве генератора импульсов. Лучше всего для новичка или для детей изучать цифровые технологии, и мой сын их любит.
Подробнее об этой схеме
Вот много интересных сайтов об этом.
10 лучших простых электронных схем для начинающих Спасибо за то, что показали мою схему на своих сайтах
Базовая электроника: 20 шагов
12 Простых электронных схем – Коллекция простых электронных схем
EasyEDA – Онлайн-дизайн печатных плат и симулятор схем
14 # Двойной светодиодный мигающий индикатор работает
Это требует дополнительной работы Free Running Multivibrator, чтобы напоминать Flip Flop. Которые постоянно поощряют себя.
Q1 и Q2 – это транзисторные PNP, которые можно использовать в целом (2N3906,2N2907 и т. Д.)
Подробнее об этой схеме
15 # Базовая музыкальная звуковая мелодия
В схеме в основном используется базовая микросхема UM66T, использующая звук музыкального происхождения с приятным звучанием и простая в использовании.
Он использует только одну интегральную схему и громкоговоритель, пьезозуммер, малогабаритный, и имеет питание только 3В.
Подробнее об этой схеме
Заключение
Это всего лишь несколько простых схем схем.Если вы хотите посмотреть больше схем, нажмите здесь!
Не только это. Смотрите больше схем ниже!
Смотрите! 99+ простых электронных схем
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
11 потрясающих схемотехнических проектов | Идеи проектов для инженеров
Из нашей коллекции схемотехнических проектов мы предлагаем вам список из 11 популярных, которые помогут вам! Наслаждаться!
1. Ручной тестер
Для начинающих есть недорогой мультитестер, который можно использовать для проверки состояния почти всех электронных компонентов, от резисторов до микросхем.Он использует всего несколько компонентов, но также может определять полярность, непрерывность, логические состояния и активность мультивибраторов.
2. Свечной зажигатель на базе ПК
Это система освещения на базе ПК, которая позволяет зажечь свечу с помощью спичек, просто нажав клавишу «Enter» на клавиатуре ПК. Это особенно полезно при праздновании таких праздников, как дни рождения и юбилеи.
3. Монитор температуры блока питания
Эта простая схема постоянно контролирует распределительную коробку сети и подает сигнал тревоги при обнаружении высокой температуры из-за перегрева, помогая предотвратить аварии, вызванные искрами в распределительной коробке из-за короткого замыкания.Он также автоматически включает яркий белый светодиод при отключении питания. Светодиодный индикатор дает достаточно света для проверки проводки блока питания или предохранителей в темноте. Схема издает один звуковой сигнал при сбое питания и еще раз при возобновлении питания.
4. Световая защелка двери внутренняя
Используя этот световой контур, вы можете закрывать или открывать дверь вашей комнаты удаленно с вашей кровати. Вам просто нужно сфокусировать фонарь на светозависимом резисторе цепи, который вы можете установить в своей комнате в подходящем месте.
5. Электронный переключатель с хлопком
Вот простой электронный выключатель с хлопком. С помощью этого переключателя вы можете включить любой прибор, хлопнув пять раз, и выключить его одним хлопком. Переключатель активирует прибор только в том случае, если вы примените правильный код хлопка (здесь пять хлопков) в течение предварительно установленного времени (10 секунд). Если вы применили неправильный код хлопка (кроме пяти хлопков) или не можете применить пять хлопков в течение 10 секунд, переключатель не активирует прибор.
6. Чувствительная оптическая охранная сигнализация
В этой оптической охранной сигнализации используются две микросхемы таймера 555. Обе микросхемы подключены как нестабильные мультивибраторы. Первый нестабильный мультивибратор, построенный на IC1, производит низкие частоты, а второй нестабильный мультивибратор, построенный на IC2, производит звуковые частоты.
7. Регулируемый источник питания с цифровым управлением
Наиболее часто используемым устройством в электронных мастерских и лабораториях является универсальный источник питания, обеспечивающий регулируемый, свободный от колебаний выходной сигнал.Здесь мы представляем регулируемый источник питания с цифровым управлением, простой и легкий в сборке.
8. Светодиодный фонарик
Светодиодыстановятся все более популярными во многих осветительных приборах. Белые светодиоды теперь обычное дело в фонариках. Вот простой и экономичный светодиодный фонарик, работающий от двух ячеек по 1,5 В.
9. Световое управление включением / выключением вентилятора
Эта схема позволяет включать / выключать вентилятор, просто направляя фонарь или другой свет на его светозависимый резистор (LDR).Схема питается от блока питания 5 В.
10. Оконное зарядное устройство
Держите подальше от злоумышленников с помощью этого компактного электрифицированного оконного зарядного устройства. Зарядное устройство производит несмертельные удары, достаточно сильные, чтобы угрожать злоумышленникам.
11. Стойка для посетителей
Здесь представлен простой счетчик, который подсчитывает количество посетителей, входящих или выходящих из зала или любого другого места, где вы установили эту схему у ворот. При получении прерывания от датчиков светозависимого резистора (LDR) схема увеличивает счетчик и отображает его на 7-сегментном дисплее.
Сообщите нам, понравились ли вам эти схемные проекты, в разделе комментариев ниже. Если у вас есть собственные схемотехнические проекты, вы также можете прислать их нам.
.