Бестрансформаторный блок питания на 3 вольта
В каждой современной квартире имеется большое количество всевозможных гаджетов, требующих постоянного электрического питания. В основном они работают от различных батареек, с относительно коротким сроком службы. Многие хозяева пытаются подключать эти устройства через обычные сетевые блоки питания на 12 В, но в большинстве случаев это не очень удобно. Основная причина заключается в больших размерах и весе понижающих трансформаторов, которые требуют себе отдельного места. Выйти из положения поможет бестрансформаторный блок питания, изготовленный на основе гасящего конденсатора.
Основным условием его нормальной работы является правильное выполнение всех необходимых расчетов. В этом случае данное устройство обеспечит надежное функционирование аппаратуры в полном автономном режиме.
Общее устройство и принцип действия
Представленная схема отличается простотой, надежностью и эффективностью. Она может быть изготовлена не только методом навесного монтажа, но и в виде печатной платы. Данная схема на двенадцать вольт является рабочей, требуется лишь заранее рассчитать параметры балластового гасящего конденсатора и подобрать нужное значение тока для конкретного устройства. Практически можно сделать 5,5-вольтовый блок с возможностью увеличения напряжения до 25 В.
Основой устройства служит балластовый конденсатор, гасящий сетевое напряжение. После этого ток попадает в диодный выпрямитель, а второй конденсатор выполняет функцию фильтра. Иногда возникает необходимость быстро разрядить оба конденсатора. С этой целью в схеме предусмотрены резисторы R1 и R2. Еще один резистор R3 используется в качестве ограничителя тока при включении нагрузки.
Расчет балластного конденсатора выполняется до сборки схемы. Для этого используется простая формула С = 3200хI/Uc, в которой I является током нагрузки (А), Uc – сетевым напряжением, С – емкостью конденсатора (мкФ). Чаще всего такие расчеты используются для светодиодов.
В качестве примера можно взять любой прибор с током 150 мА. Это может быть обычная светодиодная лампа. Сетевое напряжение будет 230 В. Таким образом, 3200 х 0,15/230 = 2,08 мкФ. Номинал конденсатора выбирается наиболее близко к расчетному, то есть, его емкость составит 2,2 мкФ, а расчетное напряжение – 400 В.
Такой простейший бестрансформаторный блок не имеет гальванической развязки с питающей сетью. В связи с этим должна быть обеспечена надежная изоляция всех соединений, а само устройство – помещено в корпус из диэлектрического материала.
Основные рабочие схемы
В большинстве случаев используются две схемы источников БП. Как правило, каждый из них представляет собой бестрансформаторный блок питания с гасящим конденсатором, который служит основным элементом данных приборов. Теоретически считается, что в цепях переменного тока эти устройства вообще не потребляют мощности. Однако в реальности в конденсаторах возникают определенные потери, что приводит к выделению некоторого количества тепла.
Поэтому все конденсаторы подвергаются предварительной проверке на возможность использования его в блоке питания. Для этого их подключают к электрической сети и отслеживают колебания температуры через некоторый промежуток времени. Если конденсатор заметно разогревается, то его нельзя использовать в качестве конструктивного элемента. Допускается лишь незначительный нагрев, неспособный повлиять на общую работоспособность устройства.
1.
Представленные на рисунках источники питания имеют конденсаторный делитель. На рисунке 1 представлен делитель общего назначения на 5 В, рассчитанный на токовую нагрузку до 0,3 А. На рисунке 2 отображается схема источника бесперебойного питания, который применяется в электронно-механических кварцевых часах.
В первой схеме делитель напряжения включает в себя бумажный конденсатор С1 и два оксидных конденсатора С2 и С3. Оба последних элемента составляют неполярное плечо, расположенное ниже С1. Его общая емкость составляет 100 мкФ. Составные части диодного моста, расположенные слева, выступают в качестве поляризующих диодов, предназначенных для оксидной пары С2 и С3. На схеме указаны номиналы элементов, в соответствии с которыми на выходе ток короткого замыкания будет равен 600 мА, а напряжение на конденсаторе С4 без нагрузки – 27 вольт.
2.
Вторая схема бестрансформаторного блока питания предназначена для замены батареек (1,5В), используемых в качестве источника питания в электронно-механических часах. Напряжение, вырабатываемое блоком питания, составляет 1,4 В при средней токовой нагрузке 1 мА. Напряжение на конденсаторе С3 без нагрузки не превышает 12 В. Оно снимается с делителя, поступает на узел с элементами VD1 и VD2, где и происходит его выпрямление.
В каждом из этих вариантов рекомендуется использовать два дополнительных резистора вспомогательного назначения. Первый элемент с сопротивлением от 300 кОм до 1 мОм подключается параллельно с гасящим конденсатором. С помощью данного резистора ускоряется его разрядка, после того как устройство отключено от сети.
Другой резистор имеет сопротивление от 10 до 50 Ом и считается балластным. Он подключается в разрыв какого-либо сетевого провода последовательно с гасящим конденсатором. Данный резистор ограничивает ток, проходящий через диодный мост при подключении устройства к сети. Оба резистора должны обладать мощностью рассеяния не менее 0,5 Вт, позволяющей предотвратить вероятные поверхностные пробои этих деталей действием высокого напряжения. Балластный резистор снижает нагрузку на стабилитрон, но одновременно наблюдается рост средней мощности, потребляемой самим блоком питания.
Расчеты основных параметров
Для того чтобы устройство было работоспособным и надежно функционировало, необходимо выполнить предварительный расчет бестрансформаторного блока питания. С этой целью потребуется рассчитать основные параметры:
- Емкостное сопротивление. При включении конденсатора в цепь переменного тока, он начинает оказывать влияние на силу тока, протекающего по этой цепи, то есть на определенном этапе он становится сопротивлением. Чем больше емкость конденсатора и частота переменного тока, тем меньше величина емкостного сопротивления и наоборот. Для расчетов используется формула X
- Сопротивление нагрузки (Rн). Его расчет позволяет выяснить, до какого значения Rн может быть уменьшено, чтобы Напряжение нагрузки стало равным напряжению стабилизации. Когда необходимо изготовить блок питания своими руками, рекомендуется воспользоваться справочной таблицей, поскольку формулы слишком сложные и не дают точных результатов.
- Напряжение гасящего конденсатора. Этот показатель обычно составляет не менее 400 В, при сетевом напряжении 220 вольт. В некоторых случаях используется более мощный элемент, с номинальным напряжением 500 или 600 В. Для бестрансформаторных блоков подходят не все типы конденсаторов. Например, устройства МБПО, МБГП, МБМ, МБГЦ-1 и МБГЦ-2 не могут работать в цепях переменного тока, в которых амплитудное значение напряжения более 150 В.
Без трансформаторная Концепция Электропитания
Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:
Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.
Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.
Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.
Преимущества использования без трансформаторной схемы питания
Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.
Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.
Недостатки без трансформаторной схемы питания
Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.
И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.
Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.
Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.
Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.
Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:
Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.
Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.
Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.
Блог о электронике
Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!
Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.
Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.
Помните обычный резистивный делитель?
Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.
Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.
Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).
Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R 2 +(XL+Xс) 2 ) 1/2
Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.
Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.
f — частота тока.
Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.
Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.
Получается у нас вот такая вот схема:
Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:
Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.
Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:
Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.
Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:
В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.
А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.
Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:
- F — частота питающей сети. У нас 50гц.
- С — емкость
- U — напряжение в розетке
- Uвых — выходное напряжение
Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.
В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА
Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.
Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:
Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.
Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:
После чего, как обычно, все вытравил и спаял:
Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.
В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.
Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.
Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.
Поэтому неукоснительно соблюдайте ряд правил:
- 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
- 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
- 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
- 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
- 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
- 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.
Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.
В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.
Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:
Все своими руками Блок питания для макетной платы 5В 3,3В
Опубликовал admin | Дата 7 июля, 2016Самодельный блок питания для макетной платы. Схема, описание ее работы, настройка, приводится в данной статье. Данный блок питания предназначен для макетирования схем, включающих в себя микроконтроллеры с модулями аналого-цифрового преобразования, при проектировании схем цифровых вольтметров, амперметров и т.д. и имеет защиту от коротких замыканий. Кроме питающих выходных напряжений 5 В и 3.3 В, блок обеспечивает и опорные напряжения величиной 2,5 В и 1,024 В.
Схема блока питания представлена на рисунке 1.
В качестве сетевого трансформатора я использовал трансформатор выходной звука от старого лампового телевизора «Рекорд». Такие трансформаторы проверены годами работы. Сколько я сделал блоков питания из них, я уж и не помню, но отказов в их работе не было. Смотрим фото 1.
Трансформатор имеет две обмотки. Обмотка с числом витков 3000, используется в качестве сетевой обмотки. Три тысячи витков вполне достаточно для обеспечения малого тока холостого хода данного трансформатора. Вторая обмотка, с числом витков 91, используется в качестве обмотки вторичной. Она обеспечивает ток нагрузки до 500мА, что вполне достаточно для работы с микроконтроллерами и индикаторами. Ее выходное напряжение без нагрузки равно 6,5 В, что тоже нам подходит. После выпрямления и фильтрации постоянное напряжение будет соответствовать амплитудному значению переменного напряжения ≈ 6,5 В т.е. 6,5 ∙ √2 = 6,5 ∙1,41 ≈ 9,2 В. Этой величины нам вполне достаточно. При использовании этого трансформатора не забудьте перебрать его сердечник. Дело в том, что изначально сердечник ТВЗ собран с зазором, а надо собрать сердечник «в перекрышку», без зазора.
Конечно, можно использовать и другие трансформаторы или просто импульсные блоки зарядки от телефонов с соответствующими выходными напряжениями. По крайней мере, входное напряжения основного стабилизатора 5В должно быть не менее 7,5 В. В качестве выпрямительного моста можно использовать малогабаритный мост DB101. Мост рассчитан на ток 1 А. Основой стабилизатора 5 В является микросхема К157ХП2, в состав которой, помимо всего входит источник опорного напряжения – ИОН. В этой статье я не буду повторяться в описании работы основного стабилизатора. Про эту часть схемы вы можете прочитать в статье «Стабилизатор 5В» и есть еще одна статья «Блок питания на 5в 2а своими руками». Хочу только заметить, что с помощью подстроечного резистора R6, можно изменять выходное напряжение основного стабилизатора до 5,12 В, что также необходимо для работы с АЦП микроконтроллеров, когда для преобразования в качестве опорного, используется общее напряжение питания. В качестве стабилизаторов на напряжения 2,5 и 3,3 вольта использованы микросхемные стабилизаторы в MSD корпусах серии 1117 – AMS1117-2,5 и AMS1117-3,3. Вывод 8 – выход ИОНа микросхемы DA1, он очень маломощный, поэтому пришлось вводить в схему буфер, в качестве которого используется один из ОУ популярной микросхемы LM358N. В данном случае ОУ работает в качестве повторителя со стопроцентной отрицательной обратной связью. Нагрузкой повторителя служат два последовательно включенных резистора R4 и R5. Резистором R4 можно подстраивать ИОН с напряжением 1,024 вольта. Да, защита от КЗ применима только к источнику пяти вольт. Вроде все. Успехов.
К.В.Ю. скачать статью.
Просмотров:4 940
для начинающих, сборка своими руками
Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.
Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.
Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.
Принципиальная схема БП
Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .
Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.
Трансформатор
На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.
Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить 12 вольт.
Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.
Диодный мост
Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.
Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный через токоограничивающий резистор R1.
С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.
Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.
Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.
Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.
Фильтрующий конденсатор
Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«
Ниже на рисунке показана схема, и уровень пульсаций в каждой точке
В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.
Стабилизатор
Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.
В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.
Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.
Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.
Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.
Стабилизированный блок питания на LM7805
На рисунке ниже представлена схема простого блока питания со стабилизатором.
На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.
На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим резистором. Светодиод служит индикатором напряжения.
Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.
Вам тоже будет интересно почитать
cxema.org – Три хороших блока питания на 5 вольт
5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.
Первый вариант – самый простой.
Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.
Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014. При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.
Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.
Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут ) точками указаны начала обмоток.
По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014.
Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.
Блок кстати выглядит так:
Второй вариант – более мощный.
Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.
Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.
Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.
Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.
Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.
Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.
Блок выглядит вот так:
Третий вариант – самый мощный.
Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.
В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843, который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.
Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:
На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.
Трансформатор для этого блока был взять от сгоревшей 100-ваттной энергосберегающей лампы. Первичка состоит из 120 витков проводом 0.3 мм, обмотка самозапитки – 20 витков тем же проводом и силовая выходная обмотка – 5 витков двумя проводами 1 мм. По выходу стоит полноценный фильтр помех, позволяющий применять этот бп там, где помехи никак не нужны.
Применять бп можно в очень мощных зарядниках для гаджетов. Он спокойно может заряжать 6 и даже 7 устройств одновременно, при этом обеспечивая стабильное 5 В на выходе.
Выглядит это всё примерно так:
А вот их относительные размеры:
Печатные платы
Ну и на этом всё. Если остались какие-либо интересующие вас моменты, о которых я не сказал, задавайте их мне на почту Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Дмитрий4202
Как устроен блок питания, который работает в каждом системнике / Хабр
Блок питания извлечён из корпуса. Пучок проводов слева подключается к компьютеру. Большой компонент посередине типа трансформатора — это фильтрующий индуктор. Кликабельно, как и все фотографии в статье
Вы когда-нибудь задумывались, что находится внутри блока питания (БП) вашего компьютера? Задача БП — преобразовать питание из сети (120 или 240 В переменного тока, AC) в стабильное питание постоянного, то есть однонаправленного тока (DC), который нужен вашему компьютеру. БП должен быть компактным и дешёвым, при этом эффективно и безопасно преобразовывать ток. Для этих целей при изготовлении используются различные методы, а сами БП внутри устроены гораздо сложнее, чем вы думаете.
В этой статье мы разберём блок стандарта ATX и объясним, как он работает1.
Как и в большинстве современных БП, в нашем используется конструкция, известная как «импульсный блок питания» (ИБП). Это сейчас они очень дёшевы, но так было не всегда. В 1950-е годы сложные и дорогие ИБП использовались разве что в ракетах и космических спутниках с критическими требованиями к размеру и весу. Однако к началу 1970-х новые высоковольтные транзисторы и другие технологические усовершенствования значительно удешевили ИБП, так что их стали широко использовать в компьютерах. Сегодня вы можете за несколько долларов купить зарядное устройство для телефона с ИБП внутри.
Наш ИБП формата ATX упакован в металлический корпус размером с кирпич, из которого выходит множество разноцветных кабелей. Внутри корпуса мы видим плотно упакованные компоненты. Инженеры-конструкторы явно были озабочены проблемой компактности устройства. Многие компоненты накрыты радиаторами. Они охлаждают силовые полупроводники. То же самое для всего БП делает встроенный вентилятор. На КДПВ он справа.
Начнём с краткого обзора, как работает ИБП, а затем подробно опишем компоненты. Своеобразный «конвейер» на фотографии организован справа налево. Справа ИБП получает переменный ток. Входной переменный ток преобразуется в высоковольтный постоянный ток с помощью нескольких крупных фильтрующих компонентов. Этот постоянный ток включается и выключается тысячи раз в секунду для генерации импульсов, которые подаются в трансформатор. Тот преобразует высоковольтные импульсы в сильноточные низковольтные. Эти импульсы преобразуются в постоянный ток и фильтруются, чтобы обеспечить хорошее, чистое питание. Оно подаётся на материнскую плату, накопители и дисководы через кабели на фотографии слева.
Хотя процесс может показаться чрезмерно сложным, но большинство бытовой электроники от мобильника до телевизора на самом деле питаются через ИБП. Высокочастотный ток позволяет сделать маленький, лёгкий трансформатор. Кроме того, импульсные БП очень эффективны. Импульсы настраиваются таким образом, чтобы обеспечить только необходимую мощность, а не превращать избыточную мощность в отработанное тепло, как в линейном БП.
Первым делом входной переменный ток проходит через цепь входного фильтра, которая фильтрует электрический шум, то есть беспорядочные изменения электрического тока, ухудшающие качество сигнала.
Фильтр ниже состоит из индукторов (тороидальных катушек) и конденсаторов. Квадратные серые конденсаторы — специальные компоненты класса X для безопасного подключения к линиям переменного тока.
Компоненты входного фильтра
Переменный ток с частотой 60 герц в сети меняет своё направление 60 раз в секунду (AC), но компьютеру нужен постоянный ток в одном направлении (DC).
Полномостовой выпрямительна фотографии ниже преобразует переменный ток в постоянный. Выходы постоянного тока на выпрямителе отмечены знаками
?
и
+
, а переменный ток входит через два центральных контакта, которые
постоянно меняют свою полярность. Внутри выпрямителя — четыре диода. Диод позволяет току проходить в одном направлении и блокирует его в другом направлении, поэтому в результате переменный ток преобразуется в постоянный ток, протекающий в нужном направлении.
На мостовом выпрямителе видна маркировка GBU606. Цепь фильтра находится слева от выпрямителя. Большой чёрный конденсатор справа — один из удвоителей напряжения. Маленький жёлтый конденсатор — это специальный керамический Y-конденсатор, который защищает от всплесков напряжения
Ниже — две схемы, как работает мостовой выпрямитель. На первой схеме у верхнего входа переменного тока положительная полярность. Диоды пропускают поток на выход DC. На второй схеме входы переменного тока поменяли полярность, как это происходит постоянно в AC. Однако конфигурация диодов гарантирует, что выходной ток остаётся неизменным (плюс всегда сверху). Конденсаторы сглаживают выход.
На двух схемах показан поток тока при колебаниях входного сигнала AC. Четыре диода заставляют ток течь в направлении по стрелке
Современные БП принимают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому могут использоваться в разных странах независимо от напряжения в местной сети. Однако схема этого старого БП не могла справиться с таким широким диапазоном. Поэтому предусмотрен переключатель для выбора 115 или 230 В.
Переключатель 115/230 В
Переключатель использует умную схему с удвоителем напряжения. Идея в том, что при закрытом переключателе (на 115 В) вход AC обходит два нижних диода в мостовом выпрямителе, а вместо этого подключается непосредственно к двум конденсаторам. Когда «плюс» на верхнем входе AC, полное напряжение получает верхний конденсатор. А когда «плюс» снизу, то нижний. Поскольку выход DC идёт с обоих конденсаторов, на выходе всегда получается двойное напряжение. Дело в том, что остальная часть БП получает одинаковое напряжение независимо от того, на входе 115 или 230 В, что упрощает его конструкцию. Недостаток удвоителя в том, что пользователь обязан установить переключатель в правильное положение, иначе рискует повредить БП, а для самого БП требуются два больших конденсатора. Поэтому в современных БП удвоитель напряжения вышел из моды.
Схема удвоителя напряжения. Каждый конденсатор получает полный вольтаж, поэтому на выходе DC двойное напряжение. Серые диоды не используются в работе удвоителя
В целях безопасности высоковольтные и низковольтные компоненты разделены механически и электрически, см. фотографию ниже. На основной стороне находятся все цепи, которые подключаются к сети AC. На вторичной стороне — низковольтные цепи. Две стороны разделены «пограничной изоляцией», которая отмечена зелёным пунктиром на фотографии. Через границу не проходит
никакихэлектрических соединений. Трансформаторы пропускают энергию через эту границу через магнитные поля без прямого электрического соединения. Сигналы обратной связи передаются на основную сторону с помощью оптоизоляторов, то есть световыми импульсами. Это разделение является ключевым фактором в безопасной конструкции: прямое электрическое соединение между линией AC и выходом БП создаёт опасность удара электрическим током.
Источник питания с маркировкой основных элементов. Радиаторы, конденсаторы, плата управления и выходные кабели удалены ради лучшего обзора (SB означает источник резервного питания, standby supply)
К этому моменту входной переменный ток преобразован в высоковольтный постоянный ток около 320 В
2. Постоянный ток нарезается на импульсы переключающим (импульсным) транзистором (
switching transistor
на схеме выше). Это силовой МОП-транзистор (MOSFET)
3. Поскольку во время использования он нагревается, то установлен на большом радиаторе. Импульсы подаются в главный трансформатор, который в некотором смысле является сердцем БП.
Трансформатор состоит из нескольких катушек проволоки, намотанных на намагничиваемый сердечник. Высоковольтные импульсы, поступающие в первичную обмотку трансформатора, создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в них напряжение. Так ИБП безопасно вырабатывает выходной ток: между двумя сторонами трансформатора нет электрического соединения, только соединение через магнитное поле. Другим важным аспектом является то, что в первичной обмотке много оборотов проволоки вокруг сердечника, а на вторичных контурах гораздо меньше. В результате получается понижающий трансформатор: выходное напряжение намного меньше входного, но при гораздо большем вольтаже.
Переключающий транзистор3 управляется интегральной схемой под названием «ШИМ-контроллер режима тока UC3842B». Этот чип можно считать мозгом БП. Он генерирует импульсы на высокой частоте 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, чип производит более широкие импульсы, чтобы пропускать больше энергии через трансформатор4.
Теперь можно посмотреть на вторую, низковольтную часть БП. Вторичная схема производит четыре выходных напряжения: 5, 12, ?12 и 3,3 вольта. Для каждого выходного напряжения отдельная обмотка трансформатора и отдельная схема для получения этого тока. Силовые диоды (ниже) преобразуют выходы трансформатора в постоянный ток. Затем индукторы и конденсаторы фильтруют выход от всплесков напряжения. БП должен регулировать выходное напряжение, чтобы поддерживать его на должном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в БП используется несколько различных методов регулирования.
Крупным планом показаны выходные диоды. Слева вертикально установлены цилиндрические диоды. В центре — пары прямоугольных силовых диодов Шоттки, в каждом корпусе по два диода. Эти диоды прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб. Они используются в качестве резисторов для измерения тока
Основными являются выходы 5 и 12 В. Они регулируются одной микросхемой контроллера на основной стороне. Если напряжение слишком низкое, микросхема увеличивает ширину импульсов, пропуская больше мощности через трансформатор и увеличивая напряжение на вторичной стороне БП. А если напряжение слишком высокое, чип уменьшает ширину импульса. Примечание: одна и та же схема обратной связи управляет выходами на 5 и 12 В, поэтому нагрузка на одном выходе может изменять напряжение на другом. В более качественных БП два выхода регулируются по отдельности5.
Нижняя сторона печатной платы. Обратите внимание на большое расстояние между цепями основной и вторичной сторон БП. Также обратите внимание, какие широкие металлические дорожки на основной стороне БП для тока высокого напряжения и какие тонкие дорожки для схем управления
Вы можете задать вопрос, как микросхема контроллера на основной стороне получает обратную связь об уровнях напряжения на вторичной стороне, поскольку между ними нет электрического соединения (на фотографии виден широкий зазор). Трюк в использовании хитроумной микросхемы под названием оптоизолятор. Внутри чипа на одной стороне чипа инфракрасный светодиод, на другой светочувствительный фототранзистор. Сигнал обратной связи подаётся на LED и детектируется фототранзистором на другой стороне. Таким образом оптоизолятор обеспечивает мост между вторичной и первичной сторонами, передавая информацию светом, а не электричеством6.
Источник питания также обеспечивает отрицательное выходное напряжение (?12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулирование питания ?12 В кардинально отличается от регулирования +5 и +12 В. Выход ?12 В управляется стабилитроном (диодом Зенера) — это специальный тип диода, который блокирует обратный ток до определённого уровня напряжения, а затем начинает проводить его. Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый) под управлением транзистора и стабилитрона (поскольку этот подход расходует энергию впустую, современные высокоэффективные БП не используют такой метод регулирования).
Питание ?12 В регулируется крошечным стабилитроном ZD6 длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор A1015 находятся на верхней стороне платы
Пожалуй, наиболее интересной схемой регулирования является выход 3,3 В, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, которые заставляют его работать как ключ (переключатель). Когда ток подаётся в индуктор магнитного усилителя, то сначала он почти полностью блокирует ток, поскольку индуктор намагничивается и магнитное поле увеличивается. Когда индуктор достигает полной намагниченности (то есть насыщается), его поведение внезапно меняется — и индуктор позволяет частицам течь беспрепятственно. Магнитный усилитель в БП получает импульсы от трансформатора. Индуктор блокирует переменную часть импульса. Выход 3,3 В регулируется изменением ширины импульса7.
Магнитный усилитель представляет собой кольцо из ферритового материала с особыми магнитными свойствами. Вокруг кольца намотано несколько витков проволоки
В блоке питания есть небольшая плата, на которой размещена схема управления. Эта плата сравнивает напряжение с эталонным, чтобы генерировать сигналы обратной связи. Она отслеживает вольтаж также для того, чтобы генерировать сигнал «питание в норме» (power good). Схема установлена на отдельной перпендикулярной плате, поэтому не занимает много места в БП.
Основные компоненты установлены на верхней стороне платы со сквозными отверстиями, а нижняя сторона покрыта крошечными SMD-компонентами, которые нанесены путём поверхностного монтажа. Обратите внимание на резисторы с нулевым сопротивлением в качестве перемычек
В БП есть ещё вторая цепь — для резервного питания
9. Даже когда компьютер формально «выключен», пятивольтовый источник резервного питания обеспечивает ему мощность 10 Вт для функций, которые продолжают работать: часы реального времени, функция пробуждения по локальной сети и др. Цепь резервного питания является почти независимым БП: она использует отдельную управляющую микросхему, отдельный трансформатор и отдельные компоненты на вторичной стороне DC, но те же самые компоненты на основной стороне AC. Эта система гораздо меньшей мощности, поэтому в цепи трансформатор меньшего размера.
Чёрно-жёлтые трансформаторы: трансформатор для резервного питания находится слева, а основной трансформатор — справа. Перед ним установлена микросхема для управления резервным питанием. Большой цилиндрический конденсатор справа — компонент удвоителя напряжения. Белые капли — это силикон, который изолирует компоненты и удерживает их на месте
Блок питания ATX сложно устроен внутри, с множеством компонентов, от массивных индукторов и конденсаторов до крошечных компонентов поверхностного монтажа
10. Однако эта сложность позволяет выпускать эффективные, маленькие и безопасные БП. Для сравнения, я когда-то писал о
блоке питания 1940-х годов, который выдавал всего 85 ватт мощности, но был размером с чемодан, весил 50 кг и стоил сумасшедшие деньги. В наше время с продвинутыми полупроводниками делают гораздо более мощные БП дешевле 50 долларов, и такое устройство поместится у вас в руке.
Блок питания REC-30 для телетайпа Model 19 (ВМФ США) 1940-х годов
Я уже писал о БП, включая историю блоков питания в IEEE Spectrum. Вам также могут понравиться детальные разборы зарядного устройства Macbook и зарядного устройства iPhone.
1
Intel представила стандарт ATX для персональных компьютеров в 1995 году. Стандарт ATX (с некоторыми обновлениями) по-прежнему определяет конфигурацию материнской платы, корпуса и блока питания большинства настольных компьютеров. Здесь мы изучаем блок питания 2005 года, а современные БП более продвинутые и эффективные. Основные принципы те же, но есть некоторые изменения. Например, вместо магнитных усилителей почти везде используют преобразователи DC/DC.
Этикетка на блоке питания
На этикетке БП указано, что он изготовлен компанией Bestec для настольного компьютера Hewlett-Packard Dx5150. Этот БП слегка не соответствует формату ATX, он более вытянут в длину. [вернуться]
2 Вы можете задать вопрос, почему AC напряжением 230 В преобразуется в постоянный ток 320 В. Причина в том, что напряжение переменного тока обычно измеряется как среднеквадратичное, которое в каком-то смысле усредняет изменяющуюся форму волны. По факту в 230-вольтовом сигнале AC есть пики до 320 вольт. Конденсаторы БП заряжаются через диоды до пикового напряжения, поэтому постоянный ток составляет примерно 320 вольт (хотя немного провисает в течение цикла). [вернуться]
3 Силовой транзистор представляет собой силовой МОП-транзистор FQA9N90C. Он выдерживает 9 ампер и 900 вольт. [вернуться]
4 Интегральная схема питается от отдельной обмотки на трансформаторе, которая выдаёт 34 вольта для её работы. Налицо проблема курицы и яйца: управляющая микросхема создаёт импульсы для трансформатора, но трансформатор питает управляющую микросхему. Решение — специальная цепь запуска с резистором 100 kΩ между микросхемой и высоковольтным током. Она обеспечивает небольшой ток для запуска микросхемы. Как только чип начинает отправлять импульсы на трансформатор, то питается уже от него. [вернуться]
5 Метод использования одного контура регулирования для двух выходов называется перекрёстным регулированием. Если нагрузка на одном выходе намного выше другого, напряжения могут отклоняться от своих значений. Поэтому во многих БП есть минимальные требования к нагрузке на каждом выходе. Более продвинутые БП используют DC/DC преобразователи для всех выходов, чтобы контролировать точность напряжения. Дополнительные сведения о перекрёстном регулировании см. в этих двух презентациях. Один из обсуждаемых методов — многоуровневая укладка выходных обмоток, как в нашем БП. В частности, 12-вольтовый выход реализован в виде 7-вольтового выхода поверх 5-вольтового выхода, что даёт 12 вольт. При такой конфигурации ошибка 10% (например) в 12-вольтовой цепи будет составлять всего 0,7 В, а не 1,2 В. [вернуться]
6 Оптоизоляторы представляют собой компоненты PC817, которые обеспечивают 5000 вольт изоляции между сторонами БП (то есть между высокой и низкой сторонами). Обратите внимание на прорезь в печатной плате под оптоизоляторами. Это дополнительная мера безопасности: она гарантирует, что ток высокого напряжения не пройдёт между двумя сторонами оптоизолятора вдоль поверхности печатной платы, например, при наличии загрязнения или конденсата (в частности, прорезь увеличивает расстояние утечки). [вернуться]
7 Ширина импульса через магнитный усилитель устанавливается простой схемой управления. В обратной части каждого импульса индуктор частично размагничивается. Схема управления регулирует напряжение размагничивания. Более высокий вольтаж усиливает размагничивание. Тогда индуктору требуется больше времени для повторного намагничивания, и, таким образом, он дольше блокирует входной импульс. При более коротком импульсе в цепи выходное напряжение уменьшается. И наоборот, более низкое напряжение размагничивания приводит к меньшему размагничиванию, поэтому входной импульс блокируется не так долго. В итоге выходное напряжение регулируется изменением напряжения размагничивания. Обратите внимание, что ширина импульса в магнитном усилителе регулируется управляющей микросхемой. Магнитный усилитель сокращает эти импульсы по мере необходимости при регулировании выходного напряжения 3,3 В. [вернуться]
8 Плата управления содержит несколько микросхем, включая операционный усилитель LM358NA, чип супервизора/сброса TPS3510P, четырёхканальный дифференциальный компаратор LM339N и прецизионный эталон AZ431. Чип супервизора интересный — он специально разработан для БП и контролирует выходное напряжение, чтобы оно было не слишком высоким и не слишком низким. Прецизионный эталон AZ431 — это вариант эталонного чипа TL431, который часто используется в БП для обеспечения опорного (контрольного) напряжения. Я уже писал о TL431. [вернуться]
9 Источник резервного питания использует другую конфигурацию — обратноходовой трансформатор. Здесь установлена управляющая микросхема A6151 с переключающим транзистором, что упрощает конструкцию.
Схема БП с использованием A6151. Она взята из справочника, поэтому не идентична схеме нашего БП, хотя близка к ней
[вернуться]
10 Если хотите изучить подробные схемы различных БП формата ATX, рекомендую сайт Дэна Мельника. Удивительно, сколько существует реализаций БП: различные топологии (полумостовые или прямые), наличие или отсутствие преобразования коэффициента мощности (PFC), разнообразные системы управления, регулирования и мониторинга. Наш БП довольно похож на БП с прямой топологией без PFC, внизу той странички на сайте Дэна. [вернуться]
Стабилизатор напряжения на 3 вольта схема. Блок питания
Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.
Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)
К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.
Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.
Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.
Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!
Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения
Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.
Наименование | AMS1117 | Kexin Промышленные |
||
Описание | Линейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223
С управляемым или фиксированным режимом регулирования |
|||
AMS1117 Технический паспорт PDF (datasheet) : | ||||
|
Наименование | Richtek технологии |
|
Описание | Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO . | |
RT9013 PDF Технический паспорт (datasheet) : | ||
Наименование | Монолитные Power Systems |
|
Описание | 3А, 1.5MHz, 28В Step-Down конвертер | |
(datasheet) : | ||
**Приобрести можно в магазине Your Cee
Наименование | Монолитные Power Systems |
|||
Описание | 3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь | |||
MP2307 Спецификация PDF (datasheet) : | ||||
|
*Приобрести можно в магазине Your Cee
Наименование | Во-первых компонентов Международной |
|
Описание | Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц | |
LM2596 Технический паспорт PDF (datasheet) : | ||
Наименование | MC34063A | Крыло Шинг International Group |
Описание | DC-DC управляемый преобразователь | |
MC34063A Технический паспорт PDF (datasheet) : |
Ниже приведены сразу две схемы 3-х Вольтовых блоков питания
.
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В
(ток в нагрузкеке 200 мА) с электронной защитой
от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.
Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.
Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.
Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.
При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.
Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.
В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.
Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:
T= (C*U бат)/(U раб. led *I раб. led)
В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.
При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.
Как подключить от пальчиковой батарейки АА 1,5В
К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.
Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.
Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.
В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.
Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.
Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.
Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.
Как подключить от 3В батарейки
Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.
От такой батарейки — таблетки на 3 Вольта можно запитать светодиод
Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.
Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:
- входное напряжение 2.7 – 5.5 В.
- максимальный выходной ток до 2.4 А.
- количество подключаемых LED от 1 до 5.
- частота преобразования от 0.8 до 1.6 МГц.
Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.
Как подключить от 9В батарейки Крона
«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.
Схема питания от батарейки крона
В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Вариант №1
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):
Вариант №2
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Вариант №3
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).
Итак, схему в студию!
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Итак, что на выходе?
Почти 5.7 Вольт;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.
В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.
Рекомендуем также
Блок питания (005) коробка
Начинающим набор конструктор Блок питания. (005)
При сборке любой электронной схемы возникает вопрос: «от чего будет питаться эта схема?» Основных два варианта- это химические источники тока ( батарейки или аккумуляторы) или блок питания, который будет преобразовывать переменное напряжение сети в постоянное с параметрами, необходимыми для работы устройства. Основными из этих параметров является напряжение и ток, выдаваемые блоком питания. Потом следуют другие параметры, может быть не главные, но в отдельных случаях необходимые для каких-то отдельных схем. Например, при изготовлении блока питания для акустических усилителей немаловажное значение имеет коэффициент пульсаций, т.е. если блок питания будет плохо сглаживать выпрямленное диодным мостом переменное напряжение, то эти пульсации с частотой 50Гц будут прослушиваться в динамиках усилителя. В некоторых случаях важное значение имеет стабильность выходного напряжения блока питания при изменении нагрузки в допустимых пределах, например для питания видеокамеры и других сложных схем. Есть ещё несколько параметров блоков питания, но в нашем случае они не являются определяющими и мы на них останавливаться не будем. В этом разделе на примере стабилизированного блока питания рассмотрим все вышеперечисленные параметры и процессы преобразования напряжения и тока. На Рис.1 изображена схема стабилизированного сетевого блока питания, преобразующего переменное сетевое напряжение 220 вольт (переменное напряжение на схемах обозначается АС) в постоянное напряжение (обозначается DC) с возможностью регулирования и стабилизации выходного напряжения. Рассмотрим последовательно все процессы. Сначала из сети напряжение 220вольт с частотой 50 герц (т.е. за одну секунду напряжение в сети меняется с плюса на минус и наоборот 50 раз) поступает через предохранитель Пр1, предназначенный защитить трансформатор от «короткого замыкания», на первичную ( I ) обмотку трансформатора (ещё её называют сетевой). Ток, протекающий через первичную обмотку, возбуждает в сердечнике трансформатора переменное магнитное поле, соответственно с частотой 50Гц, которое в свою очередь приводит к возникновению переменного тока во вторичной ( II ) обмотке. Если количество витков в обоих обмотках будет одинаково, то напряжение на вторичной обмотке практически будет равно напряжению в первичной, т.е. 220 вольт (практически,- потому что во время трансформации напряжения происходят незначительные потери на преобразовании). Если мы изготавливаем блок питания для анодной цепи лампового усилителя с напряжением 440 вольт, то количество витков во вторичной обмотке должно быть в 2 раза больше, чем в первичной. Но в нашем случае мы будем изготавливать блок питания с низким напряжением (до 30 вольт). Надо не забывать, что при определённом напряжении, электрический ток становится опасным для жизни!!! Это означает, что до определённого значения напряжения ток, протекающий через тело человека, не представляет угрозы, а при увеличении напряжения до опасного, соответственно увеличивается и ток. Именно ток, достигнув опасного уровня, протекая через тело и внутренние органы человека, может принести непоправимый урон. Принято, что безопасными в обычных условиях являются переменное напряжение до 36 вольт и постоянное до 40 вольт, а в опасных (сырые помещения, мокрый пол и др.) условиях до 24 вольт. Продолжим: мы решили, что для питания наших будущих схем нам будет достаточно, если наш универсальный блок питания будет вырабатывать на своём выходе напряжение от 3 до 24 вольт. С учётом потерь на падении напряжения на выпрямительных диодах, микросхеме стабилизатора, напряжение вторичной обмотки должно быть около 30 вольт, т.е. возьмём соотношение количества витков первичной и вторичной обмоток как 7:1. Считаем: если напряжение в сети равно 220В, то напряжение на вторичной обмотке равно 220в : 7 = 31В или если первичная обмотка содержит 2100 витков провода, то для вторичной обмотки нам необходимо намотать 2100:7=300 витков. А с учётом трансформации мощности, вторичную обмотку (грубо) мы можем намотать проводом сечением в 7 раз больше, чем первичная обмотка (не путайте сечение провода, т.е. площадь, измеряемую в мм квадратных, с диаметром провода, измеряемых в мм ). Для примера: у нас есть трансформатор от старого видеомагнитофона ВМ-12. Первичная обмотка намотана медным проводом диаметром 0,28 мм и содержит 1180 витков. Считаем количество витков во вторичной обмотке: 1180:220в (напряжение в сети) =5,3636 витков на 1 вольт напряжения, далее нам необходимо напряжение на вторичной обмотке около 30 вольт: 5,3636 х 30в = 160 витков. Диаметр провода первичной обмотки переводим в сечение: Д=0,28мм делим на 2 = 0,14мм (радиус провода) , далее по известной формуле S = 3,14 x R2 получаем S = 3,14х0,14мм2= 0,062мм2. Трансформируем это значение в сечение вторичной обмотки: 0,062мм2х7= 0,434мм2. Теперь это сечение обратно переводим в диаметр: 0,434мм2 : 3,14=0,1382мм2 и извлекаем из этого значения квадратный корень: = 0,37мм – это радиус, который умножаем на 2 и получаем диаметр провода вторичной обмотки =0,74мм. Мощность данного трансформатора равна 42 ватта. Посмотрим, достаточна ли мощность этого трансформатора для нашей схемы? Максимальный ток микросхемы стабилизатора составляет 1,5 ампера. Максимальное напряжение питания, необходимое для будущих схем будет равно 24 вольтам, т.е. максимально необходимая мощность потребления равна 24В х 1,5А= 36Вт, т.е. мощности трансформатора достаточно для работы нашей схемы во всём диапазоне токов и напряжений. Разобрались с трансформатором. Далее переменное напряжение с выхода вторичной обмотки поступает на диоды (в различных описаниях может встречаться понятие вентили) выпрямительного моста Д1-Д4. Форма переменного напряжения сети имеет вид синусоиды. На Рис.3 в верхней части показана форма напряжения на входе моста, а в нижней части на выходе выпрямителя. Как видно из этого рисунка, выпрямленное напряжение имеет большие пульсации и практически непригодно для питания электронных схем. Чтобы оно стало пригодным, его надо в первую очередь отфильтровать. Эту роль в нашей схеме будет играть электролитический конденсатор С1, который будет компенсировать «провалы между волн» отдачей в схему собственного заряда, получаемого им в момент достижения максимального значения выпрямленного напряжения, в результате чего пульсации тока после выпрямителя будут очень малы, а форма напряжения будет стремиться с прямой, обозначенной на Рис.3 прямой Ud. Здесь надо остановиться на одной особенности: допустим мы собрали и подключили только трансформатор и диодный выпрямитель без конденсатора. При измерении напряжения на выходе выпрямителя вольтметр покажет не максимальное значение, достигаемое каждой полуволной, а действующее, обозначенное прямой Ud т.е. если вы рассчитали вторичную обмотку на 30 вольт, то измеренное переменное напряжение на вторичной обмотке и выпрямленное постоянное напряжение на выходе моста будут приблизительно одинаковыми (при выпрямлении на каждом диоде «теряется» около 0,4 вольта. Учитывая, что в каждом плече 2 диода, то падение напряжения составит 0,8 вольта. Это надо учитывать при разработке низковольтных выпрямителей с напряжением 1,5 – 3 вольта) и будут около 30 вольт. Но как только мы подключим к выходу моста фильтрующий конденсатор С1, он зарядится до максимального значения напряжения полуволны выпрямленной синусоиды, т.к. нагрузки пока нет и разряжаться конденсатору пока не на что. Как видно из рисунка, напряжение на конденсаторе увеличится на 1 /3 волны ,т.е при действующем напряжении 30 вольт, напряжение может составить 45 вольт. Это надо учитывать при подборе максимально допустимого рабочего напряжения конденсатора (в нашем случае по существующим стандартам напряжений конденсаторов ближайший должен быть не менее 50 вольт, а учитывая возможные скачки напряжения сети, лучше поставить конденсатор с напряжением 63 вольта). Так же это необходимо учитывать при подключении простого блока питания (адаптера), состоящего из выпрямителя и конденсатора. В этом случае сначала блок питания подключается к схеме (нагрузке), затем в сеть. Теперь остановимся на ёмкости конденсатора С1 и типе диодов выпрямителя. При подборе сглаживающего конденсатора необходимо пользоваться следующим правилом: на 1 ампер рассчитываемой нагрузки, минимальная ёмкость должна составлять 1000МкФ. В нашем случае при максимальном токе в 1,5А ёмкость не должна быть менее 1500МкФ. С учётом выпускаемых основных стандартов, ближайшее значение будет 2200Мкф. И это минимальное значение. Для улучшения сглаживающих возможностей конденсатора можно поставить 4700МкФ. С конденсатором С1 разобрались. Диоды выпрямителя: два основных параметра – максимальное рабочее напряжение диодов и максимальный ток. В нашей схеме ток будет до 1,5А, значит диоды (или готовый диодный мост) должны быть с рабочим током 2 или более ампер и напряжением (учитывая наше максимально возможное значение в 45В плюс мы допускаем скачки в сети), оно должно быть не менее 100В (т.к. как правило диоды выпускают на 50В, потом 100В, 200В и т.д.). Далее подключаем микросхему стабилизатор напряжения КР142ЕН12А (можно КР142ЕН12Б, но у неё параметры «послабее»). На рис.6 корпус микросхемы с обозначением выводов. Вход и выход микросхемы подключаются в соответствии со схемой на рис.1 Управляющий вывод 1 подключается к регулируемому делителю напряжения, состоящему из переменного резистора R1 и постоянного R2. Корпус микросхемы необходимо установить на алюминиевый радиатор площадью не менее 200 см2 т.к. при средних и максимальных нагрузках она будет сильно нагреваться, что может привести к её поломке, для улучшения теплоотдачи между корпусом микросхемы и радиатором необходимо положить небольшое количество теплопроводящей пасты КПТ-8. Значение ёмкости конденсатора С2 может быть в пределах 25 – 100 МкФ, рабочее напряжение (с учётом нашего максимального напряжения на выходе в 24В плюс запас) должно быть 35В и выше. Для контроля параметров выдаваемого блоком питания напряжения и тока, желательно дополнить его контрольно – измерительными приборами: вольтметром и амперметром (рис.2) желательно с предельными показаниями амперметра 1,5 – 3 ампера и вольтметра 30В (если нет, можно до 50В, но будет теряться точность измерений). Если вам потребуется блок питания большей мощности, с большей отдачей по току, можно доработать рассмотренный выше блок питания дополнительным транзистором p-n-p (рис.5) или n-p-n (рис.4) проводимостью. В этом случае микросхема будет выступать регулятором напряжения для транзистора, который будет играть ключевую роль, соответственно основной радиатор большей площади необходимо установить на этот транзистор. Например КТ816 допускает ток до 3 ампер. КТ818,819 до 10 ампер (в нашем случае при нашем максимальном напряжении необходимо использовать КТ816В или Г).
Если для питания устройства требуется применить блок
питания с каким-то фиксированным напряжением, можно использовать микросхемы этой же серии КР142ЕН** (5А является 5 вольтовой, 5Б=6В, 8А=9В, 8Б=12В, 8В=15В, 9А=20В, 9В=24В). Схемы включения этих микросхем одинаковые (рис 7), но значение выводов ЕН12 и ЕН5-9 различное.
ВЫПУСК 005.
Блок питания стабилизированный с плавной регулировкой выходного напряжения от 3 до 12 вольт и блок питания с фиксированными напряжениями: 5, 6, 9, 12 вольт с током нагрузки до 0,5 ампер.
1. Трансформатор 220/15В 0,5А (1 шт.),
2. Монтажная плата для КР142ЕН12 (1 шт.),
3. Монтажная плата для КР142ЕН5А-8Б (1 шт),
4. Радиаторы для микросхем (2 шт.)
5. Конденсаторы электролитические 470 МкФ 25 В (4шт),
6. Постоянные резисторы: 10 к (гасящий ток для светодиода) (2 шт.)
240 Ом (R2 для КР142ЕН12) (1 шт.)
7. Переменный резистор R1 (регулятор напряжения КР142ЕН12) (1 шт.),
8. Микросхема КР142ЕН12 (LM317) (регулируемая) (1 шт.),
9. Микросхема КР142ЕН5А (7805) (5 вольт) (1 шт.),
10. Микросхема КР 142ЕН5Б (7806) (6 вольт) (1 шт.),
11. Микросхема КР 142ЕН8А (7809) (9 вольт) (1 шт.),
12. Микросхема КР 142ЕН8Б (7812) (12 вольт) (1 шт.),
13. Светодиоды (индикатор напряжения) (2шт.),
14. Предохранители 0,25А (2 шт.),
15. Выпрямительные диоды (8 шт.),
16. Монтажные провода,
17. Термоусаживаемая трубка (для изоляции держателя предохранителя),
18. Винт М3 (2 шт),
19. Гайка М3 (2шт),
20. Пластиковый контейнер с деталями,
21. Вилка сетевая,
22. Провод для сетевого шнура,
23. Держатель предохранителя,
24. Схема и описание.
Простая схема питания 3,3 В при 1 А для цифровых
Если вы хотите построить простую схему питания 3,3 В для цифрового микроконтроллера или esp8266. Эта схема может быть одним из способов для вас. Он может питать ток максимум 1А. Обычно мы используем обычные детали электроники, поэтому они просты и дешевы.
Принцип работы схемы
Рисунок 1: Схематическая диаграмма простой цепи источника питания 3,3 В при 1 А ) и схема фильтрующего регулятора, состоящая из C1, C2, R1, R2, ZD1 и Q1.
Начнем с того, что мы подаем напряжение 220 В переменного тока/110 В переменного тока на трансформатор-T1, чтобы изменить 220 В переменного тока примерно на 6,3 В переменного тока. Затем выпрямительный мост (от D1 до D4) выпрямляет переменный ток в пульсирующий постоянный ток.
Затем электролитический конденсатор фильтрует импульс постоянного тока, чтобы лучше сгладить его. Конденсатор С1 действует как накопительный конденсатор.
Тогда нерегулируемый будет поступать на стабилитрон-ZD1 через резистор R1. Зенер будет поддерживать постоянное напряжение на базе PNP-транзистора-Q1, что приведет к фиксированному напряжению на резисторе-R2 и выходных клеммах.
Предохранитель F1 перегорает, если ток через выходные клеммы слишком велик.
Примечание:
Транзистор PNP 2N456 или TIP42 или MJE2955 и т. д. Если вам нужно другое напряжение постоянного тока, вы должны изменить ZD1: 5,6 В для выхода 5 В.
C1-Конденсатор используется для сглаживания выходного тока, используя 1500 мкФ или 2200 мкФ (лучше).
Напряжение холостого хода, измеренное здесь для трансформатора 6,3 В, составило 8,4 В.
Если вы хотите получить более подробную информацию, пожалуйста, прочитайте схемы на изображении.
Детали, которые вам понадобятся
- Q1_2N456 или TIP42 или MJE2955 __100 В, 4 А, транзистор PNP; Количество = 1
- R1_270 Ом_1/2 Вт Допустимое отклонение резисторов: 5 %; Количество = 1
- R2_1K_1/2W Допуск резисторов: 5%; Количество = 1
- C1_1000 мкФ 25 В/2200 мкФ 25 В_Электролитические конденсаторы; Количество = 1
- C2_100 мкФ 25 В_Электролитические конденсаторы; Количество = 1
- C2_0.1мкФ 50В___Керамические конденсаторы; Количество = 1
- D1-D4_1N4002__100V 1A Диоды ; Количество = 4
- ZD1_3.9V 1W_стабилитрон; Количество = 1
- Трансформатор T1_230 В переменного тока с первичной обмотки на 6,3 В, 1 А на вторичной обмотке; Количество = 1
- Выключатель питания S1_SPST; Количество = 1
- Предохранитель F1_0,5A; Количество = 1
Подробнее Цепь питания 3 В
- LM317 Регулируемое напряжение питания Выберите 1,5 В, 3 В, 4,5 В, 5 В, 6 В, 9 В 1,5 А Источник питания 3 В, 5 В, 6 В, 9 В, 12, 15 В с использованием LM317, LM337
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь, чтобы электроника Обучение было легким .
3–30 В/2,5 А Стабилизированный источник питания
Авторские права на эту схему принадлежат умному комплекту электроники . На этой странице мы будем использовать эту схему для обсуждения улучшений и внесем некоторые изменения на основе исходной схемы.
Общее описание
Это очень полезный проект для всех, кто занимается электроникой. Это универсальный блок питания, который решит большинство проблем с питанием, возникающих в повседневной работе любой электронной мастерской.Он охватывает широкий диапазон напряжений, плавно регулируемых от 30 В до 3 В. Максимальный выходной ток составляет 2,5 А, что более чем достаточно для большинства приложений. Схема полностью стабилизирована даже на крайних значениях выходного диапазона и полностью защищена от коротких замыканий и перегрузок.
Технические характеристики – Характеристики:
- Входное напряжение: 24 В переменного тока / 3 А
- Выходной ток: 2,5 А
- Выходное напряжение: 3–30 В постоянного тока
Как это работает
Блок питания использует хорошо известную и довольно популярную ИС СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ LM 723.ИС может быть настроена на выходное напряжение, постоянно изменяющееся от 2 до 37 В постоянного тока, и имеет номинальный ток 150 мА, что, конечно, слишком мало для серьезного использования. Для увеличения пропускной способности схемы выход ИС используется для управления парой Дарлингтона, образованной двумя силовыми транзисторами BD 135 и 2N 3055. Использование транзисторов для увеличения максимального выходного тока ограничивает диапазон выходного напряжения несколько, и поэтому схема была разработана для работы от 3 до 30 В постоянного тока.Резистор R5, который вы видите включенным последовательно с выходом источника питания, используется для защиты схемы от перегрузки. Если через резистор R5 протекает слишком большой ток, напряжение на нем увеличивается, и любое напряжение выше 0,3 В приводит к отключению питания, что эффективно защищает его от перегрузок. Эта функция защиты встроена в LM 723, и падение напряжения на резисторе R5 определяется самой микросхемой между выводами 2 и 3. В то же время микросхема постоянно сравнивает выходное напряжение со своим внутренним опорным напряжением, и если разница превышает заданную разработчиком стандартами, он исправляет это автоматически.Это обеспечивает большую стабильность при различных нагрузках. Потенциометр P1 используется для регулировки выходного напряжения на желаемом уровне. Если требуется полный диапазон от 3 до 30 В, следует использовать сетевой трансформатор со вторичной обмоткой, имеющей номинал не менее 24 В/3 А. Если максимальное выходное напряжение нежелательно, конечно, можно использовать трансформатор. с более низким выходным вторичным напряжением. (Однако после выпрямления напряжение на конденсаторе С2 должно на 4-5 вольт превышать максимальное выходное напряжение, ожидаемое от схемы.
Строительство
Прежде всего, давайте рассмотрим несколько основ построения электронных схем на печатной плате. Плата изготовлена из тонкого изоляционного материала, покрытого тонким слоем проводящей меди, форма которой позволяет сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень желательно, так как это значительно ускоряет сборку и снижает вероятность ошибок.Платы Smart Kit также поставляются с предварительно просверленными отверстиями и контурами компонентов и их идентификацией, напечатанными на стороне компонентов, чтобы упростить сборку. Для защиты платы при хранении от окисления и гарантии того, что она попадет к вам в идеальном состоянии, при производстве медь лужится и покрывается специальным лаком, предохраняющим ее от окисления и облегчающим пайку. Припаивание компонентов к плате — единственный способ собрать схему, и от того, как вы это сделаете, во многом зависит ваш успех или неудача.Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, у вас не должно возникнуть проблем. Паяльник, который вы используете, должен быть легким, а его мощность не должна превышать 25 Вт. Наконечник должен быть в порядке и всегда должен содержаться в чистоте. Для этого очень удобны специально изготовленные губки, которые держат во влажном состоянии и время от времени можно протирать ими горячий наконечник, чтобы удалить все остатки, которые имеют свойство скапливаться на нем.
ЗАПРЕЩАЕТСЯ обрабатывать напильником или наждачной бумагой грязный или изношенный наконечник. Если наконечник невозможно очистить, замените его.На рынке представлено множество различных типов припоев, и вы должны выбрать качественный припой, который содержит необходимый флюс в своей сердцевине, чтобы каждый раз обеспечивать идеальное соединение.
НЕ ИСПОЛЬЗУЙТЕ флюс для пайки, кроме того, который уже включен в ваш припой. Слишком большой поток может вызвать множество проблем
и является одной из основных причин неисправности цепи. Если все-таки вам придется использовать дополнительный флюс, как это бывает при лужении медных проводов, то после окончания работы очень тщательно очистите его.Для правильной пайки компонента необходимо сделать следующее:
Зачистить выводы компонента небольшим кусочком наждачной бумаги.
Согните их на правильном расстоянии от корпуса компонента и вставьте компонент на место на плате. Иногда вы можете найти компонент с проводами большего сечения, чем обычно, которые слишком толсты, чтобы войти в отверстия ПК. доска. В этом случае используйте мини-дрель, чтобы немного увеличить диаметр отверстий. Не делайте отверстия слишком большими, так как впоследствии это затруднит пайку.Возьмите горячий утюг и поместите его кончик на вывод компонента, удерживая конец припоя в точке, где вывод выходит из платы. Наконечник утюга должен касаться грифеля чуть выше п.к. доска. Когда припой начнет плавиться и течь, подождите, пока он равномерно покроет область вокруг отверстия, а флюс закипит и выйдет из-под припоя. Вся операция не должна занимать более 5 секунд. Снимите утюг и дайте припою остыть естественным образом, не дуя на него и не перемещая компонент.Если все сделано правильно, то поверхность стыка должна иметь блестящий металлический блеск, а его края должны плавно заканчиваться на выводе компонента и дорожке платы. Если припой выглядит тусклым, потрескавшимся или имеет форму капли, значит, вы сделали сухое соединение, и вам следует удалить припой (с помощью насоса или фитиля для припоя) и переделать. Будьте осторожны, чтобы не перегреть гусеницы, так как их очень легко оторвать от доски и сломать. Когда вы припаиваете чувствительный компонент, рекомендуется удерживать вывод со стороны компонента с помощью пары плоскогубцев, чтобы отвести любое тепло, которое может повредить компонент.Убедитесь, что вы не используете больше припоя, чем необходимо, так как вы рискуете закоротить соседние дорожки на плате, особенно если они расположены очень близко друг к другу. После того, как вы закончили работу, отрежьте лишние выводы компонентов и тщательно очистите плату подходящим растворителем, чтобы удалить все остатки флюса, которые могут остаться на ней.
Начните собирать схему, разместив контакты на плате и припаяв их. Вы должны быть очень осторожны при пайке компонентов, которые будут пропускать большие токи, так как ваши соединения должны выдерживать максимальный ток, не нагреваясь.Припаяйте гнездо микросхемы на его место, стараясь не вставлять его неправильно, а затем установите резисторы на свои места на плате. Резистор R5 следует припаять так, чтобы его корпус был немного отделен от п.к. плату, чтобы воздух циркулировал вокруг компонента и охлаждал его. Продолжайте работу с конденсаторами. Будьте осторожны, чтобы не вставить электролит неправильной стороной. Полярность отмечена на конденсаторах и ПК. плата также имеет соответствующую маркировку. Вставьте выпрямительный мост на место.Мост предназначен для тяжелых условий эксплуатации и имеет провода, изготовленные из более толстого провода, чем обычно. Если у вас возникли трудности с вставкой их в п.к. доске можно увеличить отверстия мини дрелью. (Автоматическое производство печатных плат требует, чтобы все отверстия на плате были одинакового диаметра).
Однако не делайте отверстия слишком широкими, так как впоследствии вам будет гораздо труднее припаивать выводы. Припаяйте TR1 на место и установите TR2 на радиатор, следуя схеме и убедившись, что между радиатором и транзистором нет электрического соединения.Не забудьте про изоляторы и используйте теплопроводящую смесь между корпусом транзистора и радиатором. Используя провода большого сечения, подключите TR2 к плате и, наконец, с помощью плоского ленточного кабеля соедините потенциометр с остальной частью схемы. Вставьте РЕГУЛЯТОР НАПРЯЖЕНИЯ в гнездо, и ваш блок питания готов. Теперь проведите окончательную проверку своей работы, чтобы убедиться в отсутствии ошибок, которые впоследствии могут доставить массу неприятностей. Если все в порядке, то можно подключить вход схемы (на плате он обозначен «24 VAC») к вторичной обмотке трансформатора.Подсоедините вольтметр к контактам с маркировкой «OUT 3-30 V» и с помощью сетевого шнура подключите первичную обмотку трансформатора к удобной розетке. Если все сделано правильно, вольтметр должен показать показания, а поворот потенциометра должен изменить их.
Небольшие отклонения от указанных минимального и максимального напряжения являются нормальными, вызваны допусками компонентов и не должны вас беспокоить. Хотя схема работает с низким напряжением и вполне безопасно прикасаться к любой части во время ее работы, для подачи этого низкого напряжения необходим сетевой трансформатор, а первичная обмотка трансформатора подключена к сети, что делает ее очень опасной.Лучше всего использовать корпус для всего, чтобы сделать полноценный автономный блок питания для ваших экспериментов. Smart Kit также изготавливает подходящий корпус для данного источника питания с печатной передней панелью, готовыми просверленными отверстиями для выходных разъемов, переключателей, держателя предохранителя и контрольно-измерительных приборов.
Список деталей
R1 = 560R 1/4W | С1 = 100 нФ |
R2 = 1,2 К 1/4 Вт | С2 = 2200мкФ 35-40В |
R3 = 3,9 К 1/4 Вт | С3 = 100 пФ |
R4 = 15K 1/4W | С4 = 100 мкФ/35 В |
R5 = 0,15R 5W | |
D = B40 C3300/2200, выпрямительный мост на 3 А | |
P1 = потенциометр 10K | ТР1 = БД 135 |
ИС = LM723 | ТР2 = 2N3055 |
ОСТОРОЖНО
Эта схема работает от сети и в некоторых ее частях присутствует напряжение 220 В переменного тока.Напряжение выше 50 В ОПАСНО и даже может быть СМЕРТЕЛЬНЫМ. Во избежание несчастных случаев, которые могут привести к летальному исходу для вас или членов вашей семьи, соблюдайте следующие
правил:
- НЕ РАБОТАЙТЕ, если вы устали или спешите, дважды проверьте все перед подключением схемы к сети и будьте готовы отключить ее, если что-то не так.
- НЕ ПРИКАСАЙТЕСЬ к какой-либо части схемы, когда она находится под напряжением.
- НЕ оставляйте провода питания открытыми.Все провода питания должны быть хорошо изолированы. – ЗАПРЕЩАЕТСЯ заменять предохранители на другие с более высоким номиналом или заменять их проволокой или алюминиевой фольгой.
- НЕ работайте мокрыми руками. -Если вы носите цепочку, ожерелье или что-либо, что может висеть и касаться открытой части цепи, БУДЬТЕ ОСТОРОЖНЫ. ВСЕГДА ИСПОЛЬЗУЙТЕ правильный шнур питания с правильной вилкой и правильно заземлите цепь. Если корпус вашего проекта сделан из металла, убедитесь, что он правильно заземлен. Если возможно, используйте сетевой трансформатор с коэффициентом 1:1, чтобы изолировать вашу цепь от сети.При проверке схемы, работающей от сети, наденьте обувь с резиновой подошвой, встаньте на сухой непроводящий пол и держите одну руку в кармане или за спиной. Если вы примете все вышеперечисленные меры предосторожности, вы сведете риски к минимуму и тем самым защитите себя и окружающих. Тщательно сконструированное и хорошо изолированное устройство не представляет опасности для пользователя. ОСТОРОЖНО: ЭЛЕКТРИЧЕСТВО МОЖЕТ УБИТЬ, ЕСЛИ ВЫ НЕ ОСТОРОЖНЫ.
Вот несколько фотографий этого блока питания, собранного и установленного в коробку.
ОСНОВЫ ИСТОЧНИКОВ ПИТАНИЯ – Волновая электроника
Теория нерегулируемого источника питания
Поскольку нестабилизированные источники питания не имеют встроенных стабилизаторов напряжения, они обычно предназначены для получения определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».
Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть как можно ближе согласовано с током, требуемым нагрузкой. Обычно выходное напряжение будет уменьшаться по мере увеличения выходного тока на нагрузку.
При использовании нерегулируемого источника питания постоянного тока выходное напряжение зависит от величины нагрузки. Обычно он состоит из выпрямителя и сглаживающего конденсатора, но без регулирования для стабилизации напряжения. Он может иметь схемы безопасности и лучше всего подходит для приложений, не требующих точности.
Рис. 4. Блок-схема — нерегулируемый линейный источник питания
Преимущества нерегулируемых источников питания в том, что они долговечны и могут быть недорогими. Однако их лучше всего использовать, когда точность не требуется. Имеют остаточную пульсацию, аналогичную показанной на рис. 3.
ПРИМЕЧАНИЕ. Компания Wavelength не рекомендует использовать нерегулируемые блоки питания ни с одним из наших продуктов.
Теория регулируемого источника питания
Стабилизированный источник питания постоянного тока, по сути, представляет собой нерегулируемый источник питания с добавлением регулятора напряжения.Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что заданные пределы не превышены.
Рисунок 5: Блок-схема — регулируемая подача
В регулируемых источниках питания схема постоянно измеряет часть выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне. Во многих случаях для обеспечения ограничения тока или напряжения, фильтрации шумов и регулировки выходного сигнала включаются дополнительные схемы.
Линейный, коммутируемый или аккумуляторный?
Существует три подгруппы регулируемых источников питания: линейные, импульсные и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но у импульсного питания и питания от батареи есть свои преимущества.
Линейный источник питания
Линейные источники питания используются, когда наиболее важны точная регулировка и устранение помех. Хотя они не являются самым эффективным источником питания, они обеспечивают наилучшую производительность.Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.
Линейные источники питания доступны уже много лет, и они широко используются и надежны. Они также относительно бесшумны и доступны в продаже. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания. По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя КПД всего 50%.
Импульсный источник питания
Импульсные источники питания (SMPS) более сложны в конструкции, но имеют большую гибкость в отношении полярности и при правильном проектировании могут иметь КПД 80% и более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.
Рис. 6: Блок-схема — регулируемый импульсный источник питания
Одним из преимуществ коммутируемого режима является то, что потери на коммутаторе меньше.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и мешать другим цепям. Должны быть приняты меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.
Преимущество импульсных источников питания заключается в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения, а также гораздо более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, более шумен и работает на высоких частотах, требующих подавления помех.
Аккумуляторный источник питания
Аккумуляторный источник питания представляет собой третий тип источника питания и, по сути, является мобильным накопителем энергии. Питание от батарей создает незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянного напряжения по мере разрядки батарей. В большинстве приложений, использующих лазерные диоды, батареи являются наименее эффективным способом питания оборудования. Большинству аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование аккумулятора, рассеиваемая внутренняя мощность которого может превышать мощность драйвера или контроллера, может привести к повреждению устройства.
Выбор источника питания
- При выборе блока питания необходимо учитывать несколько требований.
- Требования к мощности нагрузки или цепи, включая
- Функции безопасности, такие как ограничения напряжения и тока для защиты нагрузки.
- Физический размер и эффективность.
- Помехоустойчивость системы.
Источники питания | Electronics Club
Источники питания | Клуб электроникиТрансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные источники питания
Следующая страница: Датчики
См. также: AC/DC | Диоды | Конденсаторы
Типы блоков питания
Существует много типов блоков питания.Большинство из них предназначены для преобразования сетей переменного тока высокого напряжения. электричество к соответствующему источнику низкого напряжения для электронных цепей и других устройств. Блок питания можно разбить на ряд блоков, каждый из которых выполняет определенную функцию.
Например, регулируемый источник питания 5 В:
- Трансформатор – понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
- Выпрямитель — преобразует переменный ток в постоянный, но выход постоянного тока меняется.
- Smoothing (Сглаживание) – сглаживает постоянный ток от больших колебаний до небольших пульсаций. Регулятор
- — устраняет пульсации, устанавливая выход постоянного тока на фиксированное напряжение.
Блоки питания из этих блоков описаны ниже с принципиальной схемой и графиком их выходной мощности:
Только трансформатор
Низковольтный выход AC подходит для ламп, обогревателей и специальных двигателей переменного тока. Это , а не , подходящее для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.
См.: Трансформатор
Трансформатор + выпрямитель
Регулируемый выход DC модели подходит для ламп, обогревателей и стандартных двигателей.Это , а не , подходящее для электронных схем, если они не включают сглаживающий конденсатор.
См.: Трансформер | Выпрямитель
Трансформатор + Выпрямитель + Сглаживатель
Гладкий выход DC имеет небольшую пульсацию. Он подходит для большинства электронных схем.
См.: Трансформер | Выпрямитель | Сглаживание
Трансформатор + Выпрямитель + Сглаживатель + Регулятор
Выход DC , регулируемый , очень плавный, без пульсаций.Он подходит для всех электронных схем.
См.: Трансформер | Выпрямитель | Сглаживание | Регулятор
Трансформатор
Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшой потерей мощности. Трансформаторы работают только с переменным током, и это одна из причин, по которой сетевое электричество является переменным.
Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасного высокого напряжения в сети. напряжения (230 В в Великобритании) на более безопасное низкое напряжение.
Трансформаторы потребляют очень мало энергии, поэтому выходная мощность (почти) равна входной мощности. Обратите внимание, что при снижении напряжения ток увеличивается.
Входная катушка называется первичной обмоткой , а выходная катушка называется вторичной обмоткой . Между двумя катушками нет электрического соединения, вместо этого они соединены переменное магнитное поле, создаваемое в мягком железном сердечнике трансформатора. Две линии в середине символа цепи представляют ядро.
Rapid Electronics: трансформаторы
Символ цепи трансформатора
Передаточное отношение
Отношение количества витков на каждой катушке, называемое отношением витков , определяет отношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) обмотке, подключенной к сети высокого напряжения. и небольшое количество витков на его вторичной (выходной) катушке для получения низкого выходного напряжения.
число оборотов = | Vp | = | NP | против | NS |
Power Out = Power в | против × IS = VP × IP | |
Vp = первичное (входное) напряжение
Np = количество витков первичной обмотки
Ip = первичный (входной) ток
Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной обмотки
Is = вторичный (выходной) ток
Выпрямитель
Существует несколько способов подключения диодов для создания выпрямителя для преобразования переменного тока в постоянный.Мостовой выпрямитель является наиболее важным, и он производит двухполупериодных переменный постоянный ток. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом. но этот метод редко используется сейчас, когда диоды стали дешевле. Можно использовать одиночный диод . в качестве выпрямителя, но он использует только положительные (+) части волны переменного тока для создания полуволн переменного постоянного тока.
Мостовой выпрямитель
Мостовой выпрямитель может быть изготовлен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительные, так и отрицательные участки). Переменные пары диодов проводят, это изменяется по соединениям, поэтому чередующиеся направления переменного тока преобразуются в одно направление постоянного тока.
1,4 В используется в мостовом выпрямителе, потому что на каждом проводящем диоде 0,7 В, а их всегда два. диоды проводящие, как показано на схеме.
Мостовые выпрямителиоцениваются по максимальному току, который они могут пропустить, и максимальному обратному напряжению, которое они могут выдержать.Их номинальное напряжение должно быть не менее , умноженное на три , от среднеквадратичного напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для более подробной информации, включая фотографии мостовых выпрямителей.
Rapid Electronics: Мостовые выпрямители
Мостовой выпрямитель
Выход: двухполупериодный переменный постоянный ток
(используется вся волна переменного тока)
Выпрямитель с одним диодом
В качестве выпрямителя можно использовать один диод, но он создает полуволну переменного постоянного тока с промежутками когда переменный ток отрицателен.Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они требуют очень малого тока, чтобы сглаживающий конденсатор не разряжался во время промежутков. Пожалуйста, смотрите страницу Диоды для некоторых примеров выпрямительных диодов.
Rapid Electronics: диоды выпрямителя
Выпрямитель с одним диодом
Выход: полуволна постоянного тока
(используется только половина волны переменного тока)
Сглаживание
Сглаживание выполняется электролитическим конденсатором большой емкости подключен через источник постоянного тока, чтобы действовать как резервуар, подавая ток на выход, когда переменное напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный переменный DC (пунктирная линия) и сглаженный DC (сплошная линия). Конденсатор быстро заряжается вблизи пика переменного постоянного тока, а затем разряжается, подавая ток на выход.
Обратите внимание, что сглаживание значительно увеличивает среднее значение постоянного напряжения почти до пикового значения. (1,4 × среднеквадратичное значение). Например, 6 В переменного тока RMS выпрямляется. до двухполупериодного постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до пикового значения, равного 1.4 × 4,6 = 6,4 В постоянного тока.
Сглаживание не идеальное из-за небольшого падения напряжения на конденсаторе по мере его разрядки, давая небольшую пульсацию напряжения . Для многих цепей пульсации, которые составляют 10% от питания напряжение является удовлетворительным, и приведенное ниже уравнение дает требуемое значение для сглаживающего конденсатора. Конденсатор большей емкости даст меньше пульсаций. Емкость конденсатора должна быть удвоена при сглаживании однополупериодного постоянного тока.
Rapid Electronics: электролитические конденсаторы
Сглаживающий конденсатор, C, для пульсаций 10 %:
С = | 5 × Io |
Vs × f |
где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (А)
Vs = напряжение питания в вольтах (В), это пиковое значение несглаженного постоянного тока
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц
Регулятор
Доступны ИС регулятора напряженияс фиксированным (обычно 5, 12 и 15 В) напряжением. или переменное выходное напряжение.Они также оцениваются по максимальному току, который они могут пропустить. Доступны стабилизаторы отрицательного напряжения, в основном для использования в двойных источниках питания. Большинство регуляторов имеют некоторую автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрева («тепловая защита»).
Многие микросхемы стабилизаторов постоянного напряжения имеют 3 вывода и выглядят как силовые транзисторы. например регулятор 7805 +5V 1A, показанный справа. Имеют отверстие для крепления радиатор при необходимости.
Rapid Electronics: регулятор 7805
Фотография регулятора напряжения © Рапид Электроникс
Регулятор стабилитрона
Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме.Стабилитроны рассчитаны по напряжению пробоя Vz и максимальная мощность Pz (обычно 400мВт или 1,3Вт).
Резистор ограничивает ток (как резистор светодиода). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, а его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.
Для получения дополнительной информации о стабилитронах см. страницу «Диоды».
Rapid Electronics: стабилитроны
стабилитрон
a = анод, k = катод
Выбор стабилитрона и резистора
Вот шаги для выбора стабилитрона и резистора:
- Напряжение стабилитрона Vz — требуемое выходное напряжение
- Входное напряжение Vs должно быть на несколько вольт больше, чем Vz
(для учета небольших колебаний Vs из-за пульсаций) - Максимальный ток Imax — требуемый выходной ток плюс 10 %
- Мощность стабилитрона Pz определяется максимальным током: Pz > Vz × Imax
- Сопротивление резистора : R = (Vs – Vz) / Imax
- Номинальная мощность резистора : P > (Vs – Vz) × Imax
В примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.
Например,
Если требуется выходное напряжение 5 В и выходной ток 60 мА:
- Vz = 4,7 В (ближайшее доступное значение)
- Vs = 8 В (на несколько вольт больше, чем Vz)
- Imax = 66 мА (ток плюс 10 %)
- Pz > 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
- R = (8 В – 4,7 В) / 66 мА = 0,05 кОм
= 50,
выберите R = 47 - Номинальная мощность резистора P > (8В – 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт
Двойные расходные материалы
Некоторым электронным схемам требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным питанием», потому что оно похоже на два обычных источника питания, соединенных вместе, как показано на схеме.
Двойные источники питания имеют три выхода, например источник питания ±9 В имеет выходы +9 В, 0 В и -9 В.
Rapid Electronics: блоки питания
Следующая страница: Датчики | Исследование
Политика конфиденциальности и файлы cookie
Этот веб-сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будут используется только для ответа на ваше сообщение, оно не будет передано никому другому. На этом веб-сайте отображаются рекламные объявления, если вы нажмете на это рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Никакая личная информация не передается рекламодателям. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить и контролировать файлы cookie из вашего браузера, пожалуйста, посетите сайт AboutCookies.org.
electronicsclub.info © John Hewes 2022
Хостинг этого веб-сайта принадлежит Freethought
и я рад порекомендовать их за хорошую цену и отличное обслуживание клиентов.
Основы блока питания
Детали блока питания
В идеальном случае блок питания постоянного тока (обычно называемый блоком питания), получающий питание от сети переменного тока, выполняет ряд задач:
- 1.Он изменяет (в большинстве случаев снижает) уровень питания до значения, подходящего для управления цепью нагрузки.
- 2. Он вырабатывает источник постоянного тока из сетевого (или линейного) источника переменного тока синусоидальной формы.
- 3. Предотвращает появление переменного тока на выходе источника питания.
- 4. Гарантирует, что выходное напряжение поддерживается на постоянном уровне, независимо от изменений в:
- а. Напряжение питания переменного тока на входе питания.
- б. Ток нагрузки, получаемый от выхода источника питания.
- c. Температура.
Для этого базовый блок питания имеет четыре основных этапа, показанных на рис. 1.0.1
Рис. 1.0.1 Блок-схема источника питания
Блоки питания в последнее время значительно улучшили свою надежность, но, поскольку они должны работать со значительно более высокими напряжениями и токами, чем любая или большая часть цепей, которые они питают, они часто наиболее подвержены отказу любой части электронной системы.
Современные источники питания также значительно усложнились и могут обеспечивать очень стабильное выходное напряжение, контролируемое системами обратной связи.Многие цепи электропитания также содержат автоматические цепи безопасности для предотвращения опасного перенапряжения или перегрузки по току.
Таким образом, модули питанияв Learnabout-electronics представляют многие методы, используемые в современных источниках питания, изучение которых необходимо для понимания электронных систем.
Предупреждение
Если вы планируете построить или отремонтировать блок питания, особенно тот, который питается от сетевого (линейного) напряжения, модули блоков питания на этом сайте помогут вам понять, сколько часто встречающихся схем работает.Однако вы должны понимать, что напряжения и токи, присутствующие во многих источниках питания, в лучшем случае опасны и могут присутствовать даже при отключенном источнике питания! В худшем случае высокое напряжение, присутствующее в источниках питания, может и время от времени УБИВАЕТ.
Информация, представленная на этом сайте, не только поможет вам безопасно работать с источниками питания. Вы также должны иметь навыки и оборудование для безопасной работы, а также быть в полной мере осведомлены о местных вопросах охраны труда и техники безопасности.
Пожалуйста, действуйте ответственно, автор этой информации и владельцы этого сайта не несут ответственности за любой ущерб или ущерб, причиненный лицам или любым третьим лицам, имуществу или оборудованию в результате использования или неправильного использования информации, представленной на сайте. веб-сайты, посвященные электронике.
Постоянный источник питания 12 В для светодиодных схем (часть 4/13)
В предыдущих проектах были разработаны регулируемые схемы питания.Иногда напряжение для управления конкретной схемой уже известно, и необходимо разработать схему источника питания для вывода постоянного напряжения. В этом проекте схема питания постоянного напряжения 12В предназначена для питания цепей светодиодов. Цепь должна быть спроектирована таким образом, чтобы в ней не было никаких колебаний или пульсаций. Схема будет получать питание от основных источников переменного тока и преобразовывать его в источник постоянного тока 12 В без пульсаций. Схема сможет потреблять максимальный ток 1А.
В светодиодных цепях избыточный ток через светодиоды, превышающий их номинальный прямой ток, может привести к чрезмерному повышению их температуры, что приведет к их постоянному или временному повреждению. Поэтому в таких случаях важно обеспечить постоянную подачу напряжения. К выходу схемы, разработанной в этом проекте, можно подключить один светодиод или комбинацию светодиодов, для которых требуется входное напряжение 12 В.
Силовая цепь, разработанная в этом проекте, использует ИС стабилизатора напряжения 7812 и использует обычные этапы проектирования силовой цепи, такие как понижение напряжения переменного тока, преобразование напряжения переменного тока в напряжение постоянного тока и сглаживание напряжения постоянного тока для получения прямого входа от сети переменного тока.
Необходимые компоненты —
Рис. 1: Список компонентов, необходимых для источника постоянного питания 12 В для светодиодных цепей
Блок-схема —
Рис. 2: Блок-схема постоянного источника питания 12 В для светодиодных цепей
Соединения цепи —
Схема собирается поэтапно, причем каждый каскад служит определенной цели. Для понижения 230 В переменного тока берется трансформатор 18 В — 0 — 18 В.Вторичная обмотка трансформатора соединена с мостовым выпрямителем. Полномостовой выпрямитель построен путем соединения четырех диодов 1N4007 друг с другом, обозначенных на схемах как D1, D2, D3 и D4. Катод D1 и анод D2 подключены к одной из вторичных катушек, а катод D4 и анод D3 подключены к центральной ленте вторичной катушки. Подключены катоды D2 и D3, из которых один вывод выведен с выхода выпрямителя, и подключены аноды D1 и D4, из которых другой вывод выведен с выхода двухполупериодного выпрямителя.От центральной ленты трансформатора отходит провод, который служит заземлением для положительных и отрицательных выходов постоянного тока.
Плавкий предохранитель на 1 А подключен последовательно к выходу двухполупериодного выпрямителя для защиты от источников переменного тока. Конденсатор емкостью 470 мкФ (обозначенный на схеме как C1) подключен между выходными клеммами двухполупериодного выпрямителя для сглаживания. Для регулирования напряжения микросхема LM-7812 подключена параллельно сглаживающему конденсатору. Выход берется с клеммы выхода напряжения микросхемы 7812.
Как работает схема –
Силовая цепь работает по четко определенным стадиям, каждая из которых служит определенной цели. Схема работает на следующих этапах –
1. Преобразование переменного тока в переменный
2. Преобразование переменного тока в постоянный — двухполупериодное выпрямление
3. Сглаживание
4. Регулирование напряжения
Преобразование переменного тока в переменный
Напряжение основного источника питания (электричество, подаваемое промежуточным трансформатором после понижения линейного напряжения от электростанции) составляет примерно 220-230 В переменного тока, которое в дальнейшем необходимо понизить до уровня 12 В.Для снижения напряжения 220 В переменного тока до 12 В переменного тока используется понижающий трансформатор с центральной лентой. Использование трансформатора с центральным отводом позволяет генерировать на входе как положительное, так и отрицательное напряжение, однако с трансформатора будет сниматься только положительное напряжение. Схема допускает некоторое падение выходного напряжения из-за резистивных потерь. Поэтому необходимо взять трансформатор с высоким номинальным напряжением, превышающим требуемые 12 В. Трансформатор должен обеспечивать ток 1А на выходе. Наиболее подходящим понижающим трансформатором, отвечающим указанным требованиям по напряжению и току, является 18В-0-18В/2А.Этот трансформатор понижает напряжение основной сети до +/-18 В переменного тока, как показано на рисунке ниже.
Рис. 3: Принципиальная схема трансформатора 18-0-18 В
Преобразование переменного тока в постоянный — двухполупериодное выпрямление
Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока посредством выпрямления. Выпрямление – это процесс преобразования переменного напряжения в постоянное. Есть два способа преобразовать сигнал переменного тока в сигнал постоянного тока. Один – полуволновое выпрямление, а другой – двухполупериодное выпрямление.В этой схеме двухполупериодный мостовой выпрямитель используется для преобразования 36 В переменного тока в 36 В постоянного тока. Двухполупериодное выпрямление более эффективно, чем однополупериодное, поскольку оно обеспечивает полное использование как отрицательной, так и положительной стороны сигнала переменного тока. В конфигурации двухполупериодного мостового выпрямителя четыре диода подключены таким образом, что ток протекает через них только в одном направлении, в результате чего на выходе появляется сигнал постоянного тока. Во время двухполупериодного выпрямления одновременно два диода становятся смещенными в прямом направлении, а еще два диода смещаются в обратном направлении.
Рис. 4: Принципиальная схема двухполупериодного выпрямителя
Во время положительного полупериода питания диоды D2 и D4 работают последовательно, в то время как диоды D1 и D3 смещены в обратном направлении, и ток протекает через выходную клемму, проходящую через D2, выходную клемму и D4. Во время отрицательного полупериода питания диоды D1 и D3 работают последовательно, но диоды D1 и D2 смещены в обратном направлении, и ток протекает через D3, выходную клемму и D1. Направление тока через выходную клемму в обоих направлениях остается одинаковым.
Рис. 5: Принципиальная схема, показывающая положительный цикл двухполупериодного выпрямителя
Рис. 6: Принципиальная схема, показывающая отрицательный цикл двухполупериодного выпрямителя
Диоды 1N4007 выбраны для создания двухполупериодного выпрямителя, потому что они имеют максимальный (средний) номинальный прямой ток 1 А, а в условиях обратного смещения они могут выдерживать пиковое обратное напряжение до 1000 В. Вот почему в этом проекте для двухполупериодного выпрямления используются диоды 1N4007.
Сглаживание
Сглаживание — это процесс сглаживания или фильтрации сигнала постоянного тока с помощью конденсатора. На выходе двухполупериодного выпрямителя нет постоянного напряжения. Выход выпрямителя имеет удвоенную частоту основного питания, но содержит пульсации. Поэтому его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя. Конденсатор заряжается и разряжается в течение цикла, давая на выходе постоянное напряжение постоянного тока.Итак, к выходу схемы выпрямителя подключен конденсатор большой емкости (обозначенный на схеме как C1). Поскольку постоянный ток, который должен быть выпрямлен схемой выпрямителя, имеет много всплесков переменного тока и нежелательных пульсаций, поэтому для уменьшения этих всплесков используется конденсатор. Этот конденсатор действует как фильтрующий конденсатор, который пропускает весь переменный ток через него на землю. На выходе среднее постоянное напряжение остается более плавным и без пульсаций.
Рис. 7: Принципиальная схема сглаживающего конденсатора
Регулирование напряжения
Для обеспечения регулируемого напряжения 12В на выходе используется микросхема LM7812.Эта ИС способна обеспечить ток до 1А. Он обеспечит регулируемое и стабилизированное напряжение на выходе независимо от колебаний входного напряжения и тока нагрузки. Микросхема LM7812 может иметь входное напряжение от 14,8 В до 27 В и обеспечивает постоянное выходное напряжение от 11,5 В до 12,5 В. Микросхема способна обеспечить максимальный ток 1А на выходе.
LM7812 имеет следующую внутреннюю допустимую рассеиваемую мощность:
Pвых = (Максимальная рабочая температура микросхемы)/(Тепловое сопротивление перехода к окружающей среде + Тепловое сопротивление перехода к корпусу)
Pвых = (125) / (65+5) (значения согласно техпаспорту)
Pвыход = 1.78 Вт
Таким образом, LM7812 может выдерживать рассеиваемую мощность до 1,78 Вт. Выше 1,78 Вт микросхема не выдержит такого количества выделяемого тепла и начнет гореть. Это также может привести к серьезной пожарной опасности. Таким образом, радиатор необходим для отвода избыточного тепла от микросхемы.
Рис. 8: Принципиальная схема регулятора напряжения для постоянного источника питания 12 В
Тестирование и меры предосторожности –
При сборке схемы следует соблюдать следующие меры предосторожности —
• Номинальный ток понижающего трансформатора, мостовых диодов и ИС регулятора напряжения должен быть больше или равен требуемому току на выходе.В противном случае он не сможет обеспечить требуемый ток на выходе.
• Номинальное напряжение понижающего трансформатора должно превышать максимальное требуемое выходное напряжение. Это связано с тем, что микросхема 7812 воспринимает падение напряжения примерно от 2 до 3 В. Таким образом, входное напряжение должно быть на 2–3 В больше, чем максимальное выходное напряжение, и должно находиться в пределах входного напряжения (14,5–27 В). ) LM7812.
• Конденсаторы, используемые в цепи, должны иметь более высокое номинальное напряжение, чем входное напряжение.В противном случае конденсаторы начнут пропускать ток из-за избыточного напряжения на их обкладках и лопнут.
• На выходе выпрямителя следует использовать конденсатор, чтобы он мог справляться с нежелательными сетевыми помехами. Точно так же рекомендуется использовать конденсатор на выходе регулятора для обработки быстрых переходных изменений и шума на выходе. Значение выходного конденсатора зависит от отклонения напряжения, изменений тока и переходного времени отклика конденсатора.
• Для управления большой нагрузкой на выходе необходимо установить радиатор на отверстия регулятора. Это предотвратит выдувание микросхемы из-за рассеивания тепла.
• Поскольку регулятор IC может потреблять ток только до 1 А, необходимо подключить предохранитель на 1 А. Этот предохранитель ограничит ток в регуляторе до 1А. При токе выше 1 А предохранитель перегорает, и это отключает входное питание от цепи. Это защитит схему и микросхемы регулятора от тока более 1 А.
После сборки схемы ее можно проверить с помощью мультиметра. Измерьте выходное напряжение на клеммах микросхемы 7812 и начните его тестирование со схемами серии светодиодов.
Сначала протестируем схему со светодиодами на 1,8 В. Максимум 6 светодиодов этого номинала можно подключить последовательно на выходе с ограничительным резистором 68 Ом. Каждому светодиоду требуется примерно 1,8 В, чтобы получить прямое смещение и начать светиться. Входное напряжение на схему 12В,
Вин = 12В (от 7812)
Суммарное падение напряжения на 6 светодиодах будет равно 10.8 В,
В = 1,8 * 6 = 10,8 В
Выходной ток, выдаваемый этим блоком питания/Ток, потребляемый схемой, будет равен –
I = (Входное напряжение – падение напряжения на светодиодах) /R1
I = (12 – 10,8) / 68
I = 17,6 мА
Для светодиода на 1,8 В требуется примерно 20 мА прямого тока для правильного освещения без нарушения ограничения прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 68 Ом) для ограничения тока.
Рассеиваемая мощность микросхемы LM7812 с этой схемой светодиода в качестве нагрузки составит:
Рассеиваемая мощность
P вых = (Vin – Vвых)*Iвых
Pвыход = (12-10,8) *(0,0176)
Pвых = 21,12 мВт
Рис. 9: Принципиальная схема светодиодов серии
Проверка схемы со светодиодами на 2,2 В привела к следующим результатам. Максимум 5 светодиодов этого номинала можно подключить последовательно на выходе с ограничительным резистором 47 Ом. Для каждого светодиода требуется примерно 2.2 В, чтобы получить прямое смещение и начать светиться. Входное напряжение на схему 12В,
Вин = 12В (от 7812)
Суммарное падение напряжения на 5 светодиодах составит 11 В,
В = 2,2 * 5 = 11 В
Выходной ток, выдаваемый этим блоком питания/Ток, потребляемый схемой, будет равен –
I = (Входное напряжение – падение напряжения на светодиодах) /R1
I = (12 – 11) / 47
I = 21,2 мА
Для светодиода на 2,2 В требуется примерно 25 мА прямого тока для правильного освещения без нарушения ограничения прямого тока.Только для этой цели используется последовательное сопротивление (в данном случае 47 Ом) для ограничения тока.
Рассеиваемая мощность микросхемы LM7812 с этой схемой светодиода в качестве нагрузки составит:
Рассеиваемая мощность
P вых = (Vin – Vвых)*Iвых
P вых = (12-11) * (0,0212)
Pвых = 21,2 мВт
Рис. 10: Принципиальная схема светодиодов серии
Тестирование схемы со светодиодами 3,3 В привело к следующим результатам. Максимум 3 светодиода этого номинала можно подключить последовательно на выходе с ограничительным резистором 6 или 7 Ом.Каждому светодиоду требуется примерно 3,3 В, чтобы получить прямое смещение и начать светиться. Входное напряжение на схему 12В,
Вин = 12В (от 7812)
Суммарное падение напряжения на 3 светодиодах составит 10 В,
В = 3,3 *3 = 9,9 В
Выходной ток, выдаваемый этим блоком питания/Ток, потребляемый схемой, будет равен –
I = (Входное напряжение – падение напряжения на светодиодах) /R1
I = (12 – 9,9) / 6
I = 350 мА
Для светодиода из 3.3 В, для правильного освещения без нарушения ограничения прямого тока требуется примерно 300-350 мА прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 6 или 7 Ом) для ограничения тока.
Рассеиваемая мощность микросхемы LM7812 с этой схемой светодиода в качестве нагрузки составит:
Рассеиваемая мощность
P вых = (Vin – Vвых)*Iвых
Р вых = (12-9,9) *(0,350)
Pвых = 735 мВт
Рис. 11: Принципиальная схема светодиодов серии
Другие комбинации светодиодов также могут быть испытаны при условии, что используется правильный токоограничивающий резистор, и учитывая, что входной ток цепи (комбинация светодиодов) не должен превышать 1 А.Из приведенных выше тестов видно, что рассеиваемая мощность всегда меньше 1,78 Вт (внутренний допустимый предел 7812). Тем не менее, рекомендуется использовать радиатор для охлаждения микросхемы и увеличения срока ее службы.
Схема питания, разработанная в этом проекте, может быть использована для питания светодиодных лент и шнуров. Его также можно использовать для подачи питания на светодиодные платы. В общем, любая схема, требующая постоянного питания 12 В постоянного тока с ограничением по току 1 А, может питаться от этого блока питания.
Схемы цепей
Рубрики: Учебные пособия
A Предварительное обсуждение схемы источника питания в Active-Clamp и LLC II: Сравнение импульсного входа и входа постоянного тока в преобразователях постоянного тока
Импульсные источники питания для персональных компьютеров обычно имеют конструкцию с несколькими выходными напряжениями, в которой основной выход имеет максимальный ток 12 В и является центром конструкции источника питания. Во-вторых, 3,3В и 5В имеют меньшие выходные токи.Как правило, преобразователи постоянного тока в постоянный используются для повышения стабильности выходного напряжения источника питания, уменьшая его с 12 В до 3,3 В и 5 В для питания компьютера. Постоянный ток в постоянный обычно делится на два типа в зависимости от источника входного сигнала: 1. Преобразователи постоянного тока в постоянный с импульсным входом, которые могут модулировать ширину входного импульса постоянного тока для достижения цели преобразования постоянного тока. Однако метод управления относительно сложен, и ограничением его применения является то, что он в основном используется в схемах с прямой топологией; 2.Вход постоянного тока Преобразователи постоянного тока в постоянный, которые могут достигать цели преобразования постоянного тока, регулируя ширину импульса с помощью ШИМ. Этот метод управления относительно прост и широко применяется в различных схемах.
На рис. 1 и рис. 2 показан метод преобразования постоянного тока в постоянный с импульсным входом, используемый в Active-Clamp. Схема на Рисунке 1 часто используется в технических требованиях к точности выходного напряжения менее 5%. Обратные связи 12 В и 5 В связаны вместе и имеют общий индуктор накопления энергии, что позволяет 3.3 В, чтобы принять импульсный входной преобразователь постоянного тока в постоянный для достижения высокоточного управления. Можно использовать одну ИС управления FSP6601. Структура схемы на рис. 2 используется в продуктах высокого класса с более строгими требованиями к точности управления выходным напряжением. Источник импульсов находится в середине 12-вольтового трансформатора для обеспечения преобразования постоянного тока в постоянный импульсами 5 В и 3,3 В. Два контроллера FSP6601 с ИС имеют независимую обратную связь для достижения высокой точности напряжения.
FSP Group занимается исследованиями и разработками специализированной ИС для FSP6601, чтобы удовлетворить требования к технике управления и реализовать свои приложения.Поскольку токи 5 В и 3,3 В не проходят через катушку индуктивности и конденсатор 12 В, анализ показывает, что преимущества использования преобразователей постоянного тока с импульсным входом заключаются в высокой эффективности без влияния на характеристики пульсаций 12 В. Кроме того, метод управления предполагает необходимость работы выхода 12 В в режиме постоянного тока, а конструкция должна иметь функцию ограничения обратного тока и обеспечивать стабильный источник импульсов в условиях 12 В без нагрузки (Vin). Кроме того, импульсная модуляция 5 В и 3,3 В или управление перегрузкой осуществляется с помощью «переднего фронта», поскольку метод управления не является функцией обычного контроллера преобразования постоянного тока в постоянный.Приведенный выше метод управления доказывает, что применение преобразователей постоянного тока в постоянный с импульсным входом не вызовет проблем со стабильностью напряжения в случае смещения нагрузки.
Рисунок 1: 12 В и 5 В, общий, 3,3 В постоянного/постоянного тока
Рис. 2. Сеть 12 В, 5 В и 3,3 В постоянного/постоянного тока
Рабочие сигналы на рис. 1 и рис. 2 могут улучшить понимание основного принципа работы преобразователей постоянного тока с импульсным входом.
Другой тип известен как преобразователь постоянного тока в постоянный.Его можно использовать в структуре схемы LLC, преобразуя 12 В в 5 В и 3,3 В на выходе (как показано на рисунке 3). По сути, преобразователь постоянного тока 5 В и 3,3 В добавляется к выходу 12 В, а 12 В напрямую подает ток на преобразователь постоянного тока. Принимая во внимание влияние импульсного тока преобразователя постоянного тока на характеристики пульсаций 12 В, обычно добавляется набор фильтров нижних частот, состоящих из катушки индуктивности и твердотельного конденсатора, для уменьшения влияния пульсаций. Однако фильтр нижних частот приведет к дополнительным потерям и повлияет на общую эффективность.
Таким образом, можно видеть, что преобразователь постоянного тока в постоянный с импульсным входом, используемый активным зажимом, совсем не так прост, как конструкция магнитного усилителя, и при этом отсутствуют явления частичной нагрузки или нулевой нагрузки. Его преимущество заключается в том, что он может повысить эффективность без использования сложного входного преобразователя постоянного тока на конце 12 В, что делает его технически лучшей схемной стратегией.
Рисунок 3. Преобразователь постоянного тока 12 В в 5 В и 3,3 В в рамках концепции LLC
FSP Group имеет полную линейку источников питания, а схемы Active-Clamp и LLC широко применяются в нашей продукции.